
Image Season Transitions using GANs
1st P.W.O. van Aken

Graduate School of Natural Sciences
Utrecht University

Utrecht, The Netherlands
p.w.o.vanaken@students.uu.nl - 6208878

2nd F.L.G. Blom
Graduate School of Natural Sciences

Utrecht University
Utrecht, The Netherlands

f.l.g.blom@students.uu.nl — 5988918

3rd R.R. Cuevas
Graduate School of Natural Sciences

Utrecht University
Utrecht, The Netherlands

r.ricocuevas@students.uu.nl — 1243012

4th J.A.W. Markus
Graduate School of Natural Sciences

Utrecht University
Utrecht, The Netherlands

j.a.w.markus@students.uu.nl — 6134165

5th M.A. Scheeres
Graduate School of Natural Sciences

Utrecht University
Utrecht, The Netherlands

m.a.scheeres@students.uu.nl — 9640455

6th A. Tsiamis
Graduate School of Natural Sciences

Utrecht University
Utrecht, The Netherlands

a.tsiamis@students.uu.nl — 5223652

Abstract—This paper aims to improve the state of the art
technology employed for solving the unpaired image-to-image
translation problem in the domain of summer-to-winter images.
To achieve this, a deep learning framework comprised of two
generator and two discriminator models that compete against
each other pairwise known as CycleGAN will be exploited. The
current state of the art (CNNcycleGAN) corresponds to a setup
where all of the four sub-models that together make up the
CycleGAN architecture adopt a convolutional neural network
(CNN) form. Instead, we propose using Vision Transformers
(ViTs) as the discriminators in the global architecture. The
reason behind this choice has to do with the fact that ViTs have
been shown to outperform CNNs in image classification tasks.
Performance-wise the training time of our proposed implemen-
tation (ViTcycleGAN) took 17% longer than CNNcycleGAN over
the course of 5 epochs on the selected Yosemite dataset. However,
we did observe better qualitative results in the test images
translated by ViTcycleGAN. Images produced by ViTcycleGAN’s
generator generally look less synthetic (more realistic) than those
produced by CNNcycleGAN’s generator.

Index Terms—Computer vision, Unsupervised image transla-
tion, CycleGAN, Convolutional Neural Network, Vision Trans-
former

Supplementary material:
https://github.com/MatthewScheeres/PRFinalProject

I. INTRODUCTION

Computer vision has gained important ground in the last few
years, contributing to projects ranging from automatic object
detection in self-driving cars to face detection in smartphone
cameras. According to Ballard & Brown “Computer vision is
the enterprise of automating and integrating a wide range of
processes and representations used for vision perception” [1].

An important subfield of computer vision is image-to-image
translation. Image-to-image translation is defined as “the task
of translating one possible representation of a scene into
another, given sufficient training data” [7]. Image-to-image
translation comes in two flavours, the supervised and the
unsupervised setting. Years of research have produced very
powerful image translation systems in the supervised setting

like the Pix2Pix model [7]. In the supervised setting, a coupled
image data set of the form

{(x1, y1), . . . , (xN , yN)} (1)

is available. Each instance of the labeled data set (1) is made
up of an image xi and its translation yi. For example, when
aiming to translate images from day to night, xi could be a
picture of Utrecht central station during the day and yi would
correspond to a picture of the exact same location taken at
night. One might very well argue that gathering such a data
set would be a very tedious task. In our example, one would
have to take the first picture using a camera with a tripod
during the day and then leave it at the exact same location
until night time to take the next picture. Despite being an
extremely time-consuming process it still theoretically doable.
But what if we wanted to translate images of horses to images
of zebras? In this scenario gathering a coupled data set would
be impossible. We would be in the unsupervised setting and
have two unlabeled data sets

{x1, . . . , xN1
} (2)

and
{y1, . . . , yN2

}. (3)

The first one (2) corresponding to N1 horse pictures and the
second one (3) made up of N2 pictures of zebras. We note
that due to the nature of the data, the unsupervised setting
would be far more common than the supervised one. It was
not until 2017 when the first deep learning model able to deal
with unsupervised image-to-image translation (CycleGAN)
was proposed [15].

In this project we present a modification of the current
state of the art CycleGAN architecture to obtain an image
translation system such that when given a landscape image
taken during summertime is able to generate an image of the
same landscape during wintertime and vice-versa in a more
realistic way than the current state of the art. Such an image
translation system could have several applications, for example
as a ”season-changing” tool for photo editing.

https://github.com/MatthewScheeres/PRFinalProject

II. RELATED WORK

The research conducted in this paper builds upon previous
research done in the field of Generative Adversarial Networks
(GANs) and image translation. In order to enable a thorough
understanding of this research, it needs to be properly embed-
ded into the relevant literature and related work.

The first implementation of a GAN model originates from
research by Goodfellow et al. (2014). The research incorpo-
rates a setup consisting of two competing models; a generative
model and a discriminative model. The goal of this setup is to
force accurate results from the generative model by instructing
the discriminative model to classify instances as part of the
training data or as generated by the generative model. In turn,
the generative model is instructed to deceive the discriminative
model. This manner of back-and-forth training between the
two models effectively creates a competition between the two,
which theoretically should yield a high quality generative
model which produces images that are not able to be distin-
guished as real or fake by the discriminator model. The results
from Goodfellow et al.’s research suggest that the chosen
model setup is to be considered a viable option [4]. More
details will be provided in Section III.

An extension of the research by Goodfellow et al. (2014)
was made by Mirza & Osindero (2014). The authors propose a
new and more specific structure of the GAN architecture called
conditional GAN (or cGAN). The main difference between a
GAN and a cGAN lies in the fact that in a cGAN the model is
conditioned on more information causing the model to be able
to create a specific type of data. Mirza & Osindero attain this
by using the label of a data instance as an additional parameter
for the model. This ensures that the type of data that is being
outputted by the model matches the type of data in the training
set [10]. The additional information that is used to condition
on can be of any kind and as we will later see it can even be
an image from the domain.

Using GANs in the field of image-to-image translation has
become increasingly popular in recent years. One of the dom-
inant approaches for this specific task originates from research
by Isola et al. (2016) [7] in which a ’Pix2Pix’ approach is used.
Isola et al. implement a conditional generative adversarial
network to train a generative model that maps input images
to output images. The mapping between the in- and output is
learned using a training set of aligned image pairs. The results
from Isola et al.’s research suggest that the chosen approach
significantly outperforms other approaches (for the same task).

An issue with the image-to-image translation model applied
by Isola et al. is the requirement of a training dataset consisting
of paired examples. As was mentioned in the introduction, this
is a limitation given the fact that these examples are either
difficult or impossible to gather. Therefore, attempts have been
made to create a model for unpaired image translation, i.e.
the setting without a supervised training data set. In this new
context, the goal becomes figuring out the characteristics of
the input domain and learning how these translate and relate
to the output domain. Rosales et al. proposed a method which

uses a Bayesian framework for inferring the most likely output
image. The translation technique involves the consideration of
a prior probability on the output that corresponds to a patch-
based Markov random field obtained from the input [12].

Another successful method suitable for unpaired image-to-
image translation based on the GAN architecture was proposed
by Zhu et al., who developed an extension of the GAN
architecture called CycleGAN that works for the unpaired
translation problem. Zhu et al. tested the CycleGAN architec-
ture on several types of image translation problems, including
paintings to photos, maps to aerial photos and summer to
winter landscapes. The quantitative analysis of their results
suggests that the CycleGAN model clearly outperforms other
previous techniques developed for unpaired image translation
problems [15]. More details about the CycleGAN architecture
will be provided in the following section.

III. METHODOLOGY

A. Generative Adversarial Networks (GANs)

The GAN architecture provides a deep learning framework
to solve a set of problems called unsupervised generative
modeling problems. Given an unlabeled data set, generative
modeling refers to the process of automatically generating
new plausible data instances. The GAN architecture allows
the training of a generative model by essentially transforming
the unsupervised problem to a supervised one. This is achieved
by combining two types of networks, which together make up
the GAN:

1) The generator model: A Neural Network (NN) model
(usually a type of Convolutional Neural Network (CNN)
when dealing with image data [5]) that generates new
plausible examples from the domain of the data that it
is trained with.

2) The discriminator model: A classifier that tries to find
out whether the input data it is given is real or fake
(synthetically generated). Like the generator model, the
discriminator usually also employs a CNN architecture.

These two models compete against each other during training,
each using the other’s outputs to continuously update its own
‘strategy’ in either generating synthesized outputs, or labeling
them as real or fake. This is where the model’s name comes
from; the generator is the discriminator’s adversary, and vice
versa.

As such, these models work against each other in tandem,
each strengthening the other model turn after turn, until
the generator creates synthetic instances that are (nearly)
indistinguishable from the original ones. This is done as in
the following way; the generator produces samples, taking
a random vector of inputs (usually drawn from a Gaussian
distribution) used to seed the generative process. Afterwards,
these generated samples together with instances from the
training data set are provided to the discriminator model to
be classified as real or fake. After doing so, depending on
the results of the discriminator, the weights of the models
are carefully nudged following a zero-sum game. This means

that if the generator fooled the discriminator, the discriminator
gets punished and its weights get severely modified while the
generator remains untouched. This also works the other way
around, i.e. if the generator was not able to fool the discrim-
inator, then the generator gets its weights strongly nudged
while the discriminator remains untouched. This process can
be visualized as follows:

Random vector

Generator

Fake instance Real instance

Discriminator

update model

The loop in this process is repeated until the discriminator
model can’t discern generated examples from real ones. At this
point, the discriminator model is discarded and the generator
is kept. After the training, the generator should be able to
produce instances of data from the domain of the training data
set that are nearly indistinguishable from the original ones.

B. Conditional GANs (cGANs)

It is important to note that GANs can be used to generate
data instances that very closely resemble the ones in the used
training data set, but can only do so in a purely random way.
An extension to the GAN architecture that addresses this issue
is cGAN. In this case, the generator model is provided input
that is conditioned by some additional information about the
input (like an image or text data). Here, the discriminator
is conditioned in the same way, i.e. it’s provided with an
instance that is either real or fake, together with the mentioned
additional information. This way, a cGAN can generate exam-
ples from a domain in a controlled way. The information we
choose to condition on can be of diverse nature. In image-
to-image translation problems, the conditioning is usually
performed on an image from the domain. In our specific
domain, transforming summer to winter, the generator is
provided a random vector as well as real summer photos as
input. Similarly, the discriminator is provided examples of real
and generated winter photos as well as real summer photos as
input. More precisely, it’s given a real summer image and a real
or generated winter paired image, and must determine whether
the paired image is real or fake. Therefore, the generator model
is not only trained to fool the discriminator model but also
to minimize the loss between the generated image and the
expected target image as well. Graphically, the architecture
would adopt the following form:

Real summer0 Random vector

Generator

Fake winter0 Real winter0

Discriminator

update model

Note that this approach requires a coupled data set.

C. CycleGAN

As noted by Zhu et al., the the CycleGAN architecture is
an extension to the GAN architecture that aims to capture
characteristics of the types of image collections, and finds out
how these characteristics could optimally be applied to trans-
form new images, without the burden of needing a data set of
paired images [15]. The CycleGAN architecture is comprised
of two GANs which will be denoted by the names GAN1

and GAN2. In turn, these are made up of a generator model
and a discriminator one, i.e. G1, D1 and G2, D2 respectively.
In our specific domain, GAN1 will translate summer photos
(S) to winter photos (W) and GAN2 will do this in reverse.
Thus, G1 will take summer photos and produce winter ones
and G2 and D2 will do the opposite task, i.e., G1 : S 7−→ W,
and G2 : W 7−→ S. Additionally, the discriminator D1 aims
to distinguish between winter images w ∈ W and translated
summer images G1(s); and the discriminator D2 aims to
discriminate between summer images s and translated winter
images G2(w). Graphically, the CycleGAN architecture adopts
the following structure (Note that the random vector feed into
the generators has been omitted for visual clarity).

s ∈ S w ∈ W

G1 G2

G1(s) G2(w)

D1 D2

update model update model

We want to learn the generators and discriminators given
unlabeled data sets {si}Ni=1 ⊂ S and {wj}Mj=1 ⊂ W . The
discriminators D1, D2 and generators G1, G2 are trained under
the usual adversarial loss like in the standard GAN model (red
arrows in the diagram). Mathematically, this is represented by
the following adversarial loss terms:

LGAN (G1, D2, S,W) = EpW (w)[log(D2(w))] +

EpS(s)[log(1−D2((G1(s)))],

LGAN (G2, D1,W, S) = EpS(s)[log(D1(s))] +

EpW (w)[log(1−D1((G2(w)))],

where pS(s) and pW (w) denote the summer and winter data
distributions respectively. Discriminator D2 aims to minimize
the first objective against generator G1 that tries to maximize
it, i.e.,

min
G1

max
D2

LGAN (G1, D2, S,W).

Similarly, discriminator D1 aims to minimize the first objec-
tive against generator G1 that tries to maximize it, i.e.,

min
G2

max
D1

LGAN (G2, D1,W, S).

It is important to remark that the model cannot exploit the
cGAN architecture to produce translations of the input images
because of the lack of a coupled data set. To make up for
this, the concept of cycle consistency, originally employed in
machine translation, is used instead. As we just mentioned, the
discriminators D1, D2 and generators G1, G2 are trained under
the usual adversarial loss like in the standard GAN model, but
to make up for the lack of a labeled data set an additional loss
measure is added, the cycle consistency loss. This is intended
to force the generated images to be translations of the input
images. In order to achieve this, we enforce G1 and G2 to be
cycle consistent, i.e. for any summer image s and winter image
w, we should have G2(G1(s)) = s and G1(G2(w)) = w
respectively. Therefore the cycle consistency loss adopts the
form:

Lcyc(G1, G2) = EpS(s)[G2(G1(s))− s] +

EpW (w)[G1(G2(w))− w].

As we observe, the cycle consistency loss is composed by
two terms. In the first one, GAN1 receives a summer image s
and generates a winter image G1(s). G1(s) is fed as input to
GAN2, which generates an summer image G2(G1(s)). The
first term of the cycle consistency loss is then computed as
the difference between G2(G1(s)) and s (in L1 norm for
example). Graphically:

s

G1 G2

G1(s) G2(G1(s))

D1 D2

||G2(G1(s))− s||1

The second one is symmetric to the first but the roles of GAN1

and GAN2 are swapped. Combining all the pieces together,
the full objective becomes

L(G1, G2, D1, D2) =LGAN (G1, D2, S,W) +

LGAN (G2, D1,W, S) +

λLcyc(G1, G2),

where λ controls the importance of the cycle-consistency term
and we will set it to 10 as in the work by Zhu et al. [15].
Therefore, we want to find

G∗
1, G

∗
2 = arg min

G1,G2

max
D1,D2

L(G1, G2, D1, D2).

D. Vision Transformers

Vision Transformers (ViTs) are a relatively new type of
transformers that are mainly applied to tasks that involve
vision processing, like image recognition. ViTs were first
proposed in 2021 ([17], [21]) as an extension of ’regular’
transformers (which had mainly been used for NLP tasks since
their introduction in 2017 [18]).

Transformers introduced the concept of self-attention, which
ViTs use to capture relationships between different patches,
or small segmented portions of the image. This is the main
addition Visual Transformers make, and it has been shown
that ViTs can achieve performance comparable or superior to
CNNs in image classification [20]. As we will see next, ViTs
are used in this research to provide a new implementation that
aims to improve the original CycleGAN model proposed by
Zhu et al. [15].

E. Experimental Setup

The experimental setup of this paper’s research will com-
pare two different implementations of the CycleGAN archi-
tecture. These are distinctly differing in the way the dis-
criminators are structured. In the first implementation (CN-
NcycleGAN), standard multi-layer CNNs are used as the
discriminator models (replicating the work proposed by Zhu
et al. [15]). In the second implementation (ViTcycleGAN),
which we propose in this paper, the Visual Transformer (ViT)

originally proposed in [17] is used as the discriminator models
of the CycleGAN architecture. It is important to note that both
discriminator models described in this paper were optimized
using the least squares loss as opposed to the negative log
likelihood since it has been shown to achieve a more stable
training [15].

1) CNNcycleGAN Implementation: The CNNcycleGAN
implementation considers a CNN structure for D1, D2, G1

and G2, originally described by Brownlee [16]. The generators
G1 and G2 are two CNNs each of which consists of three
convolutional layers, followed by nine residual blocks, two
deconvolution layers, and one final convolutional layer (for
an in-depth description of the conv net, please refer to A).
The kernels of all layers were initialized using a Gaussian
distribution with σ = 0.02.

The discriminators D1 and D2 are two CNNs each of which
consists of five convolutional layers, after which the output is
patched into a final convolutional layer without an activation
function. The specific architecture is also described in A.

2) ViTcycleGAN Implementation: The implementation we
propose in this paper differs from the CNNcycleGAN imple-
mentation by incorporating ViTs as the architecture discrim-
inators instead of CNNs. The main reason behind this, like
mentioned in III-D, is that Vision Transformers have been
shown to be comparable and even outperform in some cases
CNNs when it comes to image classification. The expected
result is thus a slight improvement in the the final performance
of the generator models corresponding to the ViTcycleGAN
implementation. This has to do with the fact that even though
booth implementations share the same generators, ViTs, given
that they are better image classifiers, will be generally harder to
fool than CNNs. This forces the ViTcycleGAN’s generators to
produce images that would look more realistic or, equivalently,
less synthetic.

F. Training Setup

Both networks were trained on a windows machine on a
Gigabyte NVIDIA 2080 SUPER GPU with a default 1650
MHz GPU clock speed (1845 HMz boost clock) and 1938
MHz Memory clock. Using the CUDA 11.2 toolkit and
cuDNN 8.1.1 library. The Yosemite dataset was used
to train both CycleGAN implementations. It is comprised
of 2731 unique pictures of the Yosemite National Park in
California. The dataset is divided into four folders (testA, testB,
trainA, trainB), with summer pictures being located in the A-
folders, and winter pictures in the B-folders. Both CycleGAN
models were trained for 5 epochs, for a total of 7700 training
iterations. These models were then compared on both training
performance and translation quality.

G. Evaluation Metrics

For the evaluation of the result we will firstly examine and
discuss a sample of the translated test images. Besides this
discussion we will run an experiment to quantitatively analyze
the results and the difference between the generative models.
This experiment will be based on the protocol used by Zhu

et al. and Isola et al. (2016) and consists of a perceptual
study [15] [7]. In the experiment we will gather data from
20 participants. Each participant will be shown two generated
images simultaneously one generated by the CNNcycleGAN
and the other one generated by the ViTcycleGAN model.
Consequently, the participants will be asked to select the image
that looks most realistic. Every participant is shown 10 pairs of
images (5 summer-to-winter generated images and 5 winter-to-
summer images). The order with which the images are shown
is random for each participant. Given the fact that in this
study we use a different dataset than Zhu et al., the results of
this evaluation cannot directly be compared to those results.
Therefore, this evaluation will only provide an insight into the
relative performance of the two models.

IV. RESULTS

A. Training performance

The CNNcycleGAN implementation finished 5 epochs of
training in 12804.07 seconds while on average utilising 80%
of the GPU’s computational power. Our ViTcyleGAN imple-
mentation finished the 5 epochs of training in a longer period
of 14996.64 seconds while on average utilising 70% of the
GPU’s computational power.

In the ViTcycleGAN implementation we see a ≈ 17%
increase in training time accompanied by a 12.5% decrease
in GPU utilisation. In the first place, the increase in training
time could be explained by the fact that since ViTs are better
classifiers than CNNs, at every training iteration the network
parameters are more severely modified therefore taking more
time. In the second place, the decrease in GPU utilisation has
to do with the fact that the CycleGAN is not as optimized for
training in the with ViTs present as with CNNs.

B. Translation Quality

For the following examples of the CNNcycleGAN and ViT-
cycleGAN quality-performance comparison we have cherry
picked one test image per domain translation that we think
highlights the qualitative differences between the networks.

Fig. 1. Summer → Winter: original image (Left), CNNcycleGAN (middle),
ViTcycleGAN (right)

Figure 1 shows the difference between the original, CN-
NcycleGAN, and ViTcycleGAN networks respectively. Both
networks seem to have learned to translate the foliage colour
from a green to a brown colour, as would typically be the case
in winter scenery. We think that the ViTcycleGAN network
yields the better results in this regard. Both networks appear to
attempt to add some sort of snow/frost to the top of the bushes

https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/summer2winter_yosemite.zip

at the edge of the water, which we judge to be more realistic in
the ViTcycleGAN network, although this might be due to the
already more believable colouring of the vegetation. A more
objective aspect would be the amount of artefacts present in
the CNNcycleGAN image (better visible in the Appendix’s 3).
Here we see certain discolourations/patterns not present in the
original image, which the ViTcycleGAN image also lacks. We
assume this might be a product of insufficient training, but the
fact that such artefacts are absent in the ViTcycleGAN picture
would imply that in the ViTcycleGAN network, the ViT was
able to more efficiently detect and in turn train the generator
to not produce such artefacts at an earlier stage of training.

Fig. 2. Winter → Summer: original image (Left), CNNcycleGAN (middle),
ViTcycleGAN (right)

Figure 2 shows the translation of the winter to summer
domain. Here we can see an interesting divergence in the
strategy with which the two networks translate an image.
The CNNcycleGAN network approaches the translation by
primarily painting the foliage a more vibrant green colour, this
might in turn be enough to trick the (CNN) discriminator to
classify the image as summer. The ViTcycleGAN network has
not (yet) learned to associate a greener foliage colour with the
summer season. The ViTcycleGAN generator instead appears
to attempt to remove/reduce the amount of snow in the image,
this can be seen by the colour transition that appears more
pronounced on the snow-covered trees than the background
trees. As well as the log on the riverbank to the right of the
image, in the original image both the riverbank and the log are
covered in snow. In the CNNcycleGAN image this snow has
increased in brightness as if the image is overexposed, leaving
little trace of the log in the image. In the ViTcycleGAN image
the snow still suffers from a high brightness, but we can detect
a larger part of the log (that hasn’t been covered in snow)
compared to the CNNcycleGAN image.

C. Results Perceptual Study

Summer-To-Winter Winter-To-Summer
Model Labeled More Realistic Labeled More Realistic

CNNcycleGAN 22% 42%
ViTcycleGAN 78% 58%

TABLE I
RESULTS OF PERCEPTUAL STUDY

The results of the perceptual study, which setup is discussed
in section III are presented in the table above. The findings of
the perceptual study suggest that the images generated by the

ViTcycleGAN are deemed more realistic in both the summer-
to-winter and the winter-to-summer translation settings. How-
ever, the difference in score is higher for the summer-to-winter
translations. This causes us to conclude that the ViTcycleGAN
substantially outperforms the CNNCycleGAN when it comes
to summer-to-winter translations and that the difference be-
tween the performance of the model is less pronounced on
winter-to-summer translations.

V. DISCUSSION

In the comparison of the CNNcycleGAN and ViTcycleGAN
we have found that both networks perform similarly on a large
part of the training data, but on a select number of images
the ViTcycleGAN appears to have learned a more desirable
translation model.

It is important to appreciate the fact that these networks are
severely under-trained with only 5 epochs, as can be seen from
the still very high variability of the reported losses. This means
that translations made with our current CycleGAN models
might not hold for training sessions featuring more epochs,
as both networks will improve their generator models.

A. Future Work

In future research we aim to train both networks for a longer
period, either in the form of a fixed number of epochs and
comparing the image quality, as we did in section IV-B. Or
by letting the networks run until they reach a certain loss
threshold and comparing the time difference between training
sessions.

VI. CONCLUSION

Image-to-image translation is a very exciting domain whitin
the ever-growing field of computer vision. In this project, we
trained two two different implementations of the CycleGan
architecture in order to translate summer to winter images
and vice-versa. Our proposed setup that incorporates ViTs as
part of the CycleGAN architecture showed to qualitatively and
quantitatively outperform the current state of the art in the
translation task. These results pave the way for more research
in this field in the future.

REFERENCES

[1] D. H. Ballard and C. M. Brown, ”Computer vision”. Prentice-Hall, 1982.
[2] Q. Chen and V. Koltunn, ”Photographic image synthesis with cascaded

refinement networks,” Proceedings of the IEEE international conference
on computer vision, pp.1511–1520, 2017.

[3] E. Denton and S. Chintala and A. Szlam and R. Fergus, ”Deep
Generative Image Models using a Laplacian Pyramid of Adversarial
Networks,” arXiv: 1506.05751, 2015.

[4] I. Goodfellow and J. Pouget-Abadie and M. Mirza and B. Xu and D.
Warde-Farley and S. Ozair and A. Courville and Y. Bengio, ” Generative
adversarial nets,” Advances in neural information processing systems,
Volume 27, 2014.

[5] G. James and D. Witten and T. Hastie and R. Tibshirani. An Introduction
to Statistical Learning : with Applications in R. New York : Springer,
2013.

[6] L. Hsin-Ying and T. Hung-Yu and H. Jia-Bin and S. Maneesh and
Y. Ming-Hsuan, ”Diverse Image-to-Image Translation via Disentangled
Representations,” Proceedings of the European Conference on Computer
Vision (ECCV), September 2018.

[7] P. Isola and J.Y Zhu and T. Zhou and A. A. Efros, ”Image-to-Image
Translation with Conditional Adversarial Networks,” arXiv: 1611.07004,
2016.

[8] M. Y. Liu and T. Breuel and J. Kautz, ”Unsupervised Image-to-Image
Translation Networks,” arXiv: 1703.00848, 2018.

[9] J. Long and E. Shelhamer, Evan and T. Darrell, ”Fully convolutional net-
works for semantic segmentation,” Proceedings of the IEEE conference
on computer vision and pattern recognition, 2015, pp.3431–3440.

[10] M. Mirza and S. Osindero, ”Conditional generative adversarial nets”,
arXiv preprint arXiv:1411.1784, 2014.

[11] A. Radford and L. Metz and S. Chintala, ”Unsupervised representation
learning with deep convolutional generative adversarial networks,” arXiv
preprint arXiv:1511.06434, 2015.

[12] R. Rosales and K. Achnan and B.J, Frey, ”Unsupervised image transla-
tion”, In ICVV (pp. 472-478), October 2003.

[13] T. Salimans and I. Goodfellow and W. Zaremba and V. Cheung and
A. Radford and X. Chen, ”Improved Techniques for Training GANs,”
arXiv: 1606.03498, 2016.

[14] T. C. Wang and M. Y. Liu and J. Y. Zhu and A. Tao and J. Kautz, Jan and
B. Catanzaro, ”High-Resolution Image Synthesis and Semantic Manip-
ulation With Conditional GANs,” Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), June 2018.

[15] J. Y. Zhu and T. Park and P. Isola and A. A. Efros, ”Unpaired Image-
To-Image Translation Using Cycle-Consistent Adversarial Networks,”
Proceedings of the IEEE International Conference on Computer Vision
(ICCV), Oct 2017.

[16] J. Brownlee, ”How to implement cycleGAN models”, from ”Generative
Adversarial Networks with Python: Deep Learning Generative Models
for Image Synthesis and Image Translation”, 2019, pages 528–550

[17] Paul, S. & Chen, P. Vision Transformers are Robust Learners. CoRR.
abs/2105.07581 (2021), https://arxiv.org/abs/2105.07581

[18] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A., Kaiser, L. & Polosukhin, I. Attention Is All You Need. (2017)

[19] Paul, S. & Chen, P. Vision Transformers are Robust Learners. (2021)
[20] Raghu, M., Unterthiner, T., Kornblith, S., Zhang, C. & Dosovitskiy,

A. Do Vision Transformers See Like Convolutional Neural Networks?.
(2021)

[21] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J.
Uszkoreit, N. Houlsby. AN IMAGE IS WORTH 16X16 WORDS:
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE. 2021.

APPENDIX

The specific setup of the generator and both discriminators
are shown below.

• Generator model
– Convolutional layer

∗ 64 filters
∗ 7x7 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Convolutional layer
∗ 128 filters
∗ 3x3 kernel, 2x2 strides
∗ Padding: None
∗ Activation function: ReLU

– Convolutional layer
∗ 256 filters
∗ 3x3 kernel, 2x2 strides
∗ Padding: None
∗ Activation function: ReLU

– x amount of Residual Blocks
– Deconvolution layer

∗ 128 filters

∗ 3x3 kernel, 2x2 strides
∗ Padding: Half
∗ Activation function: ReLU

– Deconvolution layer
∗ 64 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Convolutional layer
∗ 3 filters
∗ 7x7 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: Tanh

• ResNet block
– Convolutional layer

∗ 256 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Convolutional layer
∗ 256 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Channel-wise concatenation of ResNet input and
output

• Discriminator model
– Convolutional layer

∗ 256 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Convolutional layer
∗ 256 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Convolutional layer
∗ 256 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

– Convolutional layer
∗ 256 filters
∗ 3x3 kernel, 1x1 strides
∗ Padding: Half
∗ Activation function: ReLU

Fig. 3. Bigger version of figure 1 for better visibility: original image (Left), CNNcycleGAN (middle), ViTcycleGAN (right)

Fig. 4. Bigger version of figure 2 for better visibility: original image (Left), CNNcycleGAN (middle), ViTcycleGAN (right)

	Introduction
	Related Work
	Methodology
	Generative Adversarial Networks (GANs)
	Conditional GANs (cGANs)
	CycleGAN
	Vision Transformers
	Experimental Setup
	CNNcycleGAN Implementation
	ViTcycleGAN Implementation

	Training Setup
	Evaluation Metrics

	Results
	Training performance
	Translation Quality
	Results Perceptual Study

	Discussion
	Future Work

	Conclusion
	References
	Appendix

