
Pattern Set Mining

Final essay

Athanasios Tsiamis

5223652

Graduate School of Natural Sciences
Utrecht University
The Netherlands

June 2022

Pattern Set Mining 2022

1 Introduction

Patterns are so simple yet so complicated concepts.
Their existence is everywhere dubbed with different
names. In nature a pattern may be referred to as
symmetry, in mathematics as fractals while in zoology
as stripes. However, patterns are not always visible
or easily discoverable. There are many cases in which
patterns are well hidden either due to the nature of
the problem (e.g. turbulence dissipation in partial
differential equations) or the amount of data is so big,
that they are easily lost in it.

The data mining community has made systematic
attempts to formalize and solve the problem of finding
patterns or, as Fischer and Vreeken stated [11], “easily
interpretable symbolic statements about data - that
give non trivial insights in the process that generated
it”.

As it will be shown in the following sections, re-
searchers from all over the world strive to find efficient
algorithms and frameworks which, when applied to a
database, would fetch “interesting” patterns.

However, can this “interestingness” of a pattern
somehow be measured and is there any straightfor-
ward way to mine patterns? In other words, can we
find a process or a framework, which, when applied
to a database, will fetch the most “important” set of
patterns?

This essay aims to present some noteworthy papers
that outline the field of pattern set mining. It is by no
means a complete list; rather an introduction to dif-
ferent approaches to the general problem. In section
3, an in depth view of a specific subpart of pattern set
mining is given, or more accurately, how a relational
database management system (RDBMS) can be com-
bined with some of these papers to produce notable
results.

2 Frequent Pattern Mining Approaches

2.1 Frequent item set mining

Before we embark into the journey of pattern set min-
ing, it would be wise to conceptualise somewhat the
problem with the help of an example [25].

Consider an online movie streaming platform that
has various movies from different genres. Their data
analytics team, as one might expect, wants to learn
more about which movies are watched consecutively.
This offers them great insight on which movie projects
to fund and continue hosting on their native platform.

Given a set of items (i.e. an itemset) I=i1, ..., in,
and in our case movies, a transaction t is a subset
of I and a database D is a set of those transactions.
In our example, a transaction t would be a sequence
of movies a viewer watched (e.g. “Rocky I” then
“Rocky II” and then the “Million Dollar Baby”) while

a database D would contain various of these transac-
tions alongside a unique id to make them apart.

Although the streaming platform surely does con-
tain a lot of different kinds of movies, it would make
sense if a viewer has some preference to a certain
genre. For example, there is one person who likes
comedies but is clearly not into autobiography movies.
In this case, even though “Groundhog Day” and “Bo-
hemian Rhapsody” may be the two most watched
films in the platform, it wouldn’t make sense to recom-
mend the latter film to them -even though it certainly
could, as there are not a lot people who actually fol-
low through with that choice. Therefore, a framework
is needed that can somehow mine the patterns that
occur more frequently than a desired threshold. This
occurrence in the database will be denoted from now
on as support.

Formally, this type of problem is known as Fre-
quent Itemset Mining (FI Mining); Given a trans-
action database D over a set of items I, find all item-
sets that are frequent in D given the minimal support
threshold θ.

Agrawal, Imilienski and Swami can be considered
among the forefathers of Pattern Set Mining. In their
paper [1], a gentle introduction towards the prob-
lem of mining large databases for association rules is
made. In doing so, the problem is broken down into
two subproblems; generate all combinations of item-
sets that have a transactional support above a certain
threshold (i.e. per the authors “large itemsets”) and
for those itemsets generate rules that use items from
this “large” itemset. By definition the second sub-
problem is far easier than the first. Their algorithm
(which would be later called AIS) makes use of the
frontier set, a predecessor to the Apriori algorithm
(which will be described later on). AIS makes numer-
ous passes over the database, which reduces signifi-
cantly the algorithm performance. Due to this, the
authors attempt to introduce memory management
techniques to mitigate this issue.

Having set those foundations, Agrawal alongside
Srikant greatly improve the previous process by intro-
ducing in their paper the Apriori algorithm [2]. The
basic intuition of the Apriori algorithm is based on
the idea that any subset of a large itemset must be
large. Thus, the candidate sets with k items can be
generated by joining large itemsets with k − 1 items
and deleting those that contain any subset that is not
large.

Mannila et al. [20] extend the notion of patterns
into the domain of sequence of events. More specif-
ically, they analyse data which could be viewed as a
sequence of events where each event has an associ-
ated time of occurrence. In particular, they present
efficient algorithms for the discovery of all frequent
episodes, from a given class of episodes. For reference,
episodes are nothing more than partially ordered sets

Pattern Set Mining Utrecht University

of events or more informally a collection of events oc-
curring together.

However, since the notion of “closeness” is point-
less without some time bounds, the authors define
the window ; a sequence of events with a specific time
span. Based on this, the winepi algorithm is presented
which uses a sliding window to go through the event
sequence. As an output, it finds episode rules within
a sequence with respect to a certain time span. Addi-
tionally, the problem is also tackled from another ap-
proach, that of minimal occurrence of episodes. The
algorithm called minepi can be also used to solve
winepi since a window contains an occurrence of an
episode exactly when it contains a minimal occur-
rence.

By applying these algorithms in the telecommuni-
cation alarm management not only did the authors
show that their algorithm works correctly but also
that the pattern mining set field can be extended in
other fields where it may not seem relevant from a
first glance.

2.2 Limiting the results

Even though the Apriori algorithm described before
would be a groundbreaking paper that would set as
a reference point for future algorithms in the field, it
has two major drawbacks. First, it is extremely costly
to handle a huge number of candidate sets. For ex-
ample, to discover a frequent pattern of size 100 it
must generate 2100-2 candidates in total. This prob-
lem is also known as pattern explosion in which an
algorithm produces an extreme amount of candidate
patterns where only some of them may be of relevance.
Second, Apriori algorithm imposes a significant over-
head in the computation by having to repeatedly scan
the database and check a large set of candidates by
pattern matching.

Thus, based on those, it seems fairly natural to
set some constraints on the number of candidate sets
fetched by the Apriori algorithm.

Han et al. [14] created a method to mitigate the
aforementioned problems. This was achieved through
FP-trees, a compact data structure which avoids re-
peatedly scanning the transaction database. A FP -
tree consists of one root labeled as “null”, a set of
item-prefix subtrees as the children of the root, and a
frequent-item-header table. The frequent item header
table is used so that each item points to its first occur-
rence in the tree via a node-link. The authors suggest
that the construction of a compact FP -tree can be
done through an algorithm called FP-growth. This
algorithm, by keeping track of the increasingly bigger
frequent itemsets through this aformentioned struc-
ture, can construct the complete set of frequent items.
The authors admit that, since it’s a main memory
structure, it is unrealistic to create an FP -tree in a

big data context. Therefore, they propose splitting
the database into sub databases and for each of them
finding its corresponding FP -tree. The problem of
FP -growth in big data will be addressed in more de-
tail in section 3.0.3.

2.3 Constraint pushing

In the constraints that have been mentioned thus far,
in order to decide whether something is a pattern or
not, it had to do with the frequency of an itemset.
However, while the support is an example of a con-
straint, it is certainly not the only one.

Reverting back to the movie example, the data an-
alytics team in order to maximize ad revenue may
be also interested in the average duration a user is
spending on the platform (apart from the amount of
movies they watched). Such constraint, by its defini-
tion, is considered hard for an Apriori algorithm since
in step k+1 a new lengthy or short movie may change
completely the end result.

Therefore, the important thing is not so much the
constraint itself but whether it holds for a subset or a
superset of the given set. Monotone constraints hold
for supersets of X if the constraint holds for X while
anti-monotone constraints hold for subsets of X.

Pei et al. [22] study these kind of constraints and
come up with some concepts in order to implement
certain types of them in some mining algorithms.
They introduce convertible constraints which fall into
three classes: convertible anti-monotone, convertible
monotone and strongly convertible. As per the name
suggests, a constraint can be converted to mono-
tone (or anti-monotone) by imposing an order to it.
Strongly convertible are those constraints that with
a particular order R are convertible anti-monotone,
while with respect to its inverse R−1 are convertible
monotone.

Based on those, two algorithms are developed:
FICA for mining FI with convertible anti-monotone
constraints and FICM for convertible monotone con-
straints. The main idea for both of them is based on
the notion of FP -trees that was discussed earlier.

2.3.0.1 Looking ahead id est ExAnte
Based on the previous papers, constraint pushing

techniques have been proven to be effective in reduc-
ing the search space in frequent pattern mining. How-
ever, while pushing anti-monotone constraints has
been proven to actually be profitable, this doesn’t
stand for monotone ones.

Bonchi et al. [10] show that this claim is unjusti-
fied and introduce ExAnte, a preprocessing data al-
gorithm which greatly reduces both the search space
and the input dataset in constraint frequent pattern
mining. ExAnte can be used with any constraint
that has a monotone component and thus convertible

Pattern Set Mining 2022

monotone constraints. Not only that, but being a pre-
processing algorithm ExAnte can be coupled with any
constrained pattern mining algorithm.

2.4 Missing the forest for the trees

Those previous papers were strong advocates of con-
straint pushing. Indeed, it greatly reduces on the fly
the amount of candidates that exist and thus effec-
tively overcomes the limitations of Apriori. However,
constraint pushing cannot be considered the panacea
of all pattern set mining frameworks.

Jochen and Güntzer [15] express their incredulity
to this aforementioned technique. They state that
recklessly applying constraints during the mining runs
diverges from the point of an Knowledge Data Discov-
ery process (KDD process). Instead, what they pro-
pose, is to do a single and expensive mining run once
and apply the filtering afterwards. This approach,
albeit slower than constraint pushing - especially in
the initial run, does not narrow a priori the result set
based on some potentially ill founded assumption by
the user.

This concept, although it makes some very overop-
timistic assumptions, such as that the association
rules can fit in main memory, it raises some very valid
points on how researchers should address the prob-
lems of pattern set mining. Sometimes, even though
computer scientists develop algorithms that are opti-
mal in the sense that they can solve a problem really
fast, they can forget the bigger picture; that of pat-
tern set mining as a process from start to end.

2.5 Condensed representation

Up until now, the general approaches for finding fre-
quent itemsets were either looking over all possible
candidates (e.g. Apriori) or applying some sort of pre
or post filtering to the complete set results (e.g. Ex-
Ante). In the following section, a different approach
will be presented; that of condensed representation,
which in its most general form, as the name suggests,
tries to find patterns that offer the most succinct rep-
resentation of the whole set of patterns.

Pasquier et al. [21] propose a new and efficient
algorithm, named Close. Close is loosely related to
Apriori, in the sense that it is based on closed itemset
lattice which is a sub-order of Apriori’s subset lattice.
For reference, a subset lattice is an abstract math-
ematical structure which imposes a partial order on
the sets.

Delving into the details of the paper, Close algo-
rithm is strongly based on closed itemsets. An item-
set I is considered closed if there exists no superset
that has the same support as I. Reverting back to the
movie example, if the viewers of Rocky I (R1) always
compulsively also watched Rocky II (R2), then R1 is
not closed since R1R2 has the same support as R1.

Therefore, using this concept and the notion of sub-
set lattice, close Algorithm is able to prune a large
number of candidate itemsets reducing the number of
passes in the database as well as the CPU overhead.

Even though Close produces in general few candi-
dates, it is important to notice that it does not neces-
sarily outperform Apriori. Some particular datasets
may force Close to perform exceptionally bad render-
ing its functionalities useless.

Calders and Goethals [7] exploit this concept of con-
densed representations to introduce the Non Deriv-
able Itemsets (NDI).

More specifically, they present some rules (called
deduction rules) to deduct tight upper and lower
bounds on the support of a candidate set. When
those tight upper and lower bounds coincide, then the
itemset is called derivable as its support can be de-
rived exactly from its bound. Understandably, those
itemsets pose no interest to the researcher and can be
effectively discarded. On the other hand, NDIs are es-
pecially intriguing since they are a cornerstone in the
minimal representation of all frequent itemsets. Their
algorithm called NDI-algorithm is based on the Apri-
ori algorithm with some pruning for the non frequent
and also derivable itemsets.

Unfortunately, these condensed representations
have no guarantees on how many they will exactly
be. However, a nice property of the NDIs is that
their size is bounded by the logarithm of the database
which indicates that in general the NDI set size will
not be very large. Empirical evaluation verifies this
by showing that NDI is among the best (if not the
best) condensed representations of FIs.

Knobbe and Ho [16] proposed a new approach
which does not focus on finding patterns by them-
selves but rather based on the interestingness of
them when comparing them to other patterns. They
present a method of selecting a small subset of pat-
terns, called a pattern team, that optimises some given
quality measure for a set of patterns.

Based on six intuitions about the essence of pat-
terns, four quality measures are thus defined: joint
entropy, exclusive coverage, Decision Table Majority
Accuracy (DTM) and Area Under Curve(AUC). Joint
entropy is the amount by which the uncertainty of
one random variable is reduced due to the knowledge
of another. Exclusive coverage is a measure which
favours pattern sets that have less overlap between
other patterns. DTM accuracy determines how pre-
dictive a pattern set is by computing the accuracy of
a classifier while, lastly, AUC measures the area of the
convex hull of the patterns in the ROC-space.

Experiments show that Joint Entropy and DTM
perform well in general with the others performing
adequately in only some cases.

The same authors therefore continue on the same
topic of choosing a few among the many [17]. In their

Pattern Set Mining Utrecht University

paper, their main interest is selecting an itemset from
the total set of items such that the database is parti-
tioned with as uniform of a distribution over the parts
as possible.

Still, as many itemsets could fit into that selection
process, an (optimal) measure has to be used to find
the best. For that, the notion of entropy from the
field of Information Theory is employed. In short,
entropy measures, in this particular case, distinction;
items that appear in either most of the transactions
or none at all, convey little to no information as they
can’t be distinguished in a database.

Based on that concept, the authors are interested in
the itemsets of k-size that maximize the joint entropy
among all other itemsets of k-size. Such itemsets are
called maximally informative k-itemsets (mikis).

Four exact and one greedy algorithms are presented
to compute mikis. The central principle of the exact
algorithms is to consider all subsets of size k in lex-
icographic order (i.e. generalised alphabetical order)
and compute the joint entropy of each in order to find
the maximum.

The almost exhaustive search in the first algorithm
is, needless to say, computationally expensive and
thus, tweaks are made in the other exact algorithms to
mitigate this issue. These adjustments are reflected in
the experiments, where significant improvements are
made over the baseline solution, but even then with
conflicting results in some particular database sets.

On the same note, Bringmann and Zimmermann
[6] introduce a heuristic approach to select a few pat-
terns, amongst the many, as best as possible. To elab-
orate further on this, let S be the set of patterns pi
present in a database T . Their goal is to select a sub-
set S∗ ⊂ S that has three main characteristics: (a)
S∗ should be of relatively small size, so a user can in-
spect it, (b) elements of S∗ should accurately describe
the main aspects of T and (c) it should contain only
the essential; that is patterns, that could be described
by another pattern, should be discarded. This redun-
dancy, with respect to T is quantified, according to a
measure Φ.

Given those, the heuristic approach considers three
different alternatives based on (three) different mea-
sures. Experiments done on various datasets show no
clear winner among them with one measure (ΦC) be-
ing computationally most expensive but also showing
very good reduction effects, while the others recover
more of the original partitioning.

Geerts et al. [12] introduce a new and objective
interesting measure to extract knowledge from binary
databases using the concept of tiles. A tile is a region
of databases consisting only of ones. A collection of
possibly overlapping tiles constitutes a tiling.

In that paper, they address the following problems:
“the maximum k-tiling problem which asks for a tiling
consisting of at most k tiles having the largest possi-

ble area; the minimum tiling problem which asks for
a tiling of which the area equals to the total num-
ber of ones in the database and consists of the min-
imum number of tiles; the large tile mining problem
which asks for all tiles in the database each having at
least some minimum area; and the top-k tiles problem
which asks for the k tiles that have the largest area”.
All of them are proven to have the NP -hard property.

As for the algorithm, the Large Tile Mining (LTM)
algorithm uses a branch and bound strategy with sev-
eral pruning techniques to solve the large tile min-
ing problem. Meanwhile, k-LTM, a greedy algorithm,
which is built on top of LTM finds the top-k tiles. The
other problems are addressed through NP-reduction
techniques from other NP-hard problems.

Experimental evaluation is done on a sparse as well
as a dense dataset. For context, a sparse dataset is
a dataset which contains a relatively high percentage
of zeroes. The experiments verify the efficacy and
efficiency of the algorithms. However, as noted by
the authors, this work is preliminary and many im-
provements can be made regarding the experimental
evaluation and upper bounds of the approximation.

2.6 Selecting few to describe the whole with
mathematics

Up until this point, all of the approaches described
in the papers were either based on exhaustive search
within vast pattern spaces or on some sort of post or
pre filtering of the results. However, from a pure the-
oretical statistical perspective this is redundant; rep-
resentative sampling guarantees that inferences and
conclusions can reasonably extend from the sample
to the population as a whole.

This is what motivated Boley et al. [5] when they
presented local pattern sampling algorithms which are
by definition non-enumerative. Surely, as noted also
by them, they weren’t the first breaking new ground in
combining stochastic processes with pattern set min-
ing [4]. They are, though, the first to sample patterns
directly, avoiding the quite time consuming stochastic
process named Markov Chain Monte Carlo (MCMC).

Four ways of sampling are proposed which all have
a two step process as their backbone. In the first step,
one element from a properly constructed set of objects
is drawn and in the second step a sub-object from
those preconstructed objects is chosen. Using those
drawn objects, one can build a classifier which will
predict, as verified by some experiments, well enough
the set of frequent itemsets.

Sampling is not the only way to estimate the
number of frequent patterns (for a given threshold).
Leeuwen and Ukkonen [18] present an algorithm to
estimate the frequent pattern set quickly, hence the
name FastEst. Using FastEst, they also develop an-
other algorithm (called SPECTRA) which uses iso-

Pattern Set Mining 2022

tonic regression to estimate the number of frequent
patterns for all possible thresholds.

The main idea behind FastEst relies on Knuth’s
algorithm. In short, Knuth estimates the size of a
search tree without exhaustive traversal by construct-
ing a tree where every node corresponds to a frequent
itemset. FastEst traverses the tree until it reaches a
maximal frequent itemset and then uses Knuth’s pro-
cess to compute the size of the set fast.

2.6.0.1 From rules to itemsets
Turning the focus from finding “interesting” associ-

ation rules to finding “interesting” itemsets may seem
redundant at a first glance, since the latter is already
contained in the former. However, Webb [27] having a
different view introduces self-sufficient itemsets. Per
the author, “self-sufficient itemsets are those whose
frequency cannot be explained solely by their fre-
quency of either their subsets or supersets”. Itemsets
that are not self sufficient are unlikely to be interest-
ing in many contexts. An important note is though
that this does not imply that all self-sufficient item-
sets are of great interest.

To make this more concrete, consider the following
example. LetDiS denote a distant star while s denote
the shape of that star. If it were not known a priori
that all stars are round, the fact that they are could
be an interesting discovery. But once this is revealed,
it is expected that every superset of {DiS,s}∪X will
have the same support as {DiS}∪X. Hence, {DiS,s}
poses little to no interest.

To test whether those interesting patterns are self-
sufficient or not, Webb employs statistical testing.
There are three main approaches to tackle this prob-
lem which are intended to be applied as a post-
processing step to filter the itemsets from the general
set of itemsets.

Experiments show that these approaches perform
well for collections of itemsets that are few hundred
but this does not apply when hundreds of thousands
are to be computed.

In a somewhat similar statistical context, Lijffijt et
al. [19] constructed a novel approach for finding the
smallest set of results that accurately describes the
data by using statistical significance testing.

The approach consists of three major components:
(i) a null hypothesis, (ii) a test statistic and (iii) some
constraints. The null hypothesis expresses the back-
ground knowledge the user has when dealing with the
data. The test statistic quantifies in a single number
all the properties about the data a user wants to have
explained, while the constraints are, for example, the
patterns that the algorithm is allowed to give as an
output.

Formalising this concept a bit more, it is nothing
more than a maximization problem; for a given k, find
a set of constraints I of size k such that the p-value

for that set of constraints is maximized.
The most obvious solution to this problem (denoted

by I∗) would be to perform an exhaustive search
over all sets of constraints (where |I|=k) and select
the subset with the maximal global p-value. How-
ever, this requires exponential time and is NP -hard.
Therefore, other options have to be considered. The
GREEDY algorithm selects every time the best con-
straint that maximizes the objective function and ter-
minates when |I|=k. GREEDY, albeit not optimal,
can be considered as such in some cases, as proven by
the authors.

2.7 Quantifying subjectiveness

In the previous section, a notable point was made
which was deliberately overlooked; a user has to se-
lect a null hypothesis for their model which would be
used as a baseline for measuring the interestingness of
a pattern. This concept, as it is, is a bit vague; sub-
jective interestingness is not defined yet in a formal
way which would make use of a user’s background in-
formation. Tijl de Bie [8] aims to bridge that gap by
using the maximum entropy (MaxEnt) distribution
subject to some constraints that represent the user’s
knowledge.

The MaxEnt is nothing more than a way to for-
malise surprise through entropy. The probability dis-
tribution which best represents the current state of
user’s background knowledge about the data is the
one with the largest entropy (i.e. surprise).

Various measures of unexpectedness are considered
in the paper such as self-information (the smaller
the probability the more surprising it is), information
compression ratio or even the p-value from hypothesis
testing.

Continuing on the same topic, Tijl de Bie [3] moves
up one level of abstraction and introduces a frame-
work to formalise interestingness in a subjective man-
ner. Thus, he manages to sketch a process in which
a user with a given initial belief state about the data,
is able to update their beliefs based on the most sur-
prising data. This process, albeit it may seem at a
first glance as only a high level concept, is actually
properly defined through various mathematical tools.
In fact, it is somewhat similar to Bayesian statistics,
but adjusted to take advantage of the notions defined
in the previous paper.

2.8 Pattern Explosion: Revisited

The notions of entropy and tiling (section 2.7 and 2.5
respectively) give a fresh new perspective at things.
Various concepts can be revisited now where new so-
lutions with these tools can be found.

Pattern explosion, as briefly mentioned before, is
an important issue of pattern set mining. Loose con-
straints or ill-defined algorithms lead to an extreme

Pattern Set Mining Utrecht University

amount of candidate frequent itemsets. To battle
this, Vreeken et al. [26] propose a heuristic algorithm
called KRIMP using the Minimal Description Length
(MDL) principle. In short, the MDL is a model se-
lection principle where the shortest description of the
data is the best model.
To compress the data, the concept of a code table is

used. More formally, let I be a set of items and C a set
of code words. A code table CT is a two column table
such that the first column contains itemsets and the
second column contains elements from C, such that
each element of C occurs at most once.

KRIMP constitutes of a greedy search algorithm
that starts from the singleton patterns in a code table
and adds to it patterns sequentially from a preordered
list of patterns. If a pattern improves the overall com-
pression (score) of the database, then it is added in
the final list of patterns. Otherwise it is discarded
and the algorithm moves on to the next pattern.

In order to test whether KRIMP is actually a vi-
able solution to the pattern explosion problem, it is
tested against 27 datasets of various sizes. The algo-
rithm performs fairly well with some cases achieving
a reduction of seven orders of magnitude.

3 RDBMS AND PATTERN SET MINING: AN
INTERESTING PAIR

Pattern Set Mining as it has been done exceedingly
clear by now, extracts, as per the name suggests, pat-
terns from a database. Up until this point, the focus
of this paper has been on the different approaches at
tackling the problem from a more theoretical perspec-
tive. That is, while most research papers that were
mentioned had algorithms which were implemented
and tested against other algorithms, the problem of
applying this knowledge to a relational database with
queries was neglected.

This section aims to address this issue by presenting
an SQL-like language (section 3.0.1) and how these
languages were used with two well known frequent
pattern mining algorithms to extract results from re-
lational databases (section 3.0.2 &3.0.3).

The widespread use of the internet, especially in the
21st century, led to an explosion of data created by
mankind. To tackle this problem, all of the compa-
nies by now have chosen to implement either a more
modern solution (NO-SQL approach) or a standard
relational database model. Relational databases con-
sist of an excellent tool to store, filter and access data.
These operations are usually done through a Struc-
tured Query Language (SQL) with the help of highly
specialised cluster computing frameworks. However,
as advanced this field may seem now, just 25 years
ago, this concept was still very new. The majority
of pattern mining systems were developed largely on
file systems and specialised data structures. Combin-

ing pattern set mining with database systems was at
best loose and access was done through an interface
or some sort of SQL-like language.

3.0.1 DMQL: A first attempt at formalising the
language

Han et al. [13] take advantage of the ongoing attempt
to standardize the evergrowing SQL-19991, Object
Management Group (OMF) and Object Data Man-
agement Group (ODBG) languages to create a Data
Mining Query Language (DMQL). Although, this lan-
guage cannot be considered complete in any way, it
would act as a great influence for other papers (see
section 3.0.2).

The authors, thankfully, before arbitrarily design-
ing this language, decided to set some guidelines based
on the general philosophies of the field of data mining.
Those philosophies revolve around the following five
basic points.

(I) The set of data relevant to a data mining task
should be specified in a data mining request.

(II) The kinds of knowledge to be discovered should
be specified in a data mining request.

(III) Background knowledge could be generally
available for data mining process.

(IV) Data mining results should be able to be ex-
pressed in terms of generalized or multiple-level con-
cepts.

(V) Various kinds of thresholds should be able to
be specified flexibly to filter out less interesting knowl-
edge.

Based on these, a DMQL can now be designed. This
language would consist of four cornerstones: (i) the
set of data in relevance to the data mining process,
(ii) the kind of knowledge to be discovered, (iii) the
background knowledge and (iv) the justification of in-
terestingness of the knowledge.

The set of relevant data can be thought as a query
(e.g. an SQL-query) which asks the database for a
specific result. The second point can be considered
as the association rule per se; the concept of search-
ing relations and patterns in the data. Background
knowledge is nothing more than a high level concept of
the query language design. It should not be confused,
though, with the background knowledge described in
(ADD REF). Finally, the fourth cornerstone pertains
to the well known concept of threshold in a database
such as the aforementioned support of an itemset.

DMQL supports a SQL-like syntax with an ex-
tended Backus-Naur grammar. Figure 1 shows an
example of a query in DMQL while Figure 2 shows
how to mine association rules in it.

Finally, as mentioned before, the goal of their pa-
per is to construct a robust language for data and
pattern mining processes. However, it would be fully

1Also called SQL-3

Pattern Set Mining 2022

Figure 1: DMQL query

Figure 2: Mining association rules in DMQL

reasonable for a user to expect a graphical user inter-
face (GUI) which displays the results in a nice and
comprehensible way while in the back it applies those
“core” five points. Therefore, a GUI is designed in the
DBMiner System but due to a huge variety of data
mining GUI systems across the scientific community,
a standard for it, is difficult to be set.

3.0.2 Piecing the puzzle together

Sarawagi et al. [23] paved the way in trying to unify
the various data mining techniques with database
systems. In their paper, a task force of researchers
with deep expertise on mining methods and the IBM
Database Management System (i.e. DB2), tried to
implement efficiently the Apriori algorithm, described
in section 2.1, by exploring several implementation al-
ternatives scrapped from various papers. This imple-
mentation would be then tested against various other
architectures to see whether it is viable or not. Vary-
ing results were achieved.

Before moving forward into the details of the paper,
one might question whether SQL can be considered a
feasible option in the first place. Indeed, a mining
computation expressed on SQL can seriously leverage
the program by taking advantage of the underlying
SQL-parallelization, portability and scalability it of-
fers.

Figure 3 indicates the architectures the authors had

Figure 3: Architecture Sarawagi et al. considered

in their mind when thinking this process. Briefly, the
mining operation is done on some extension of the
SQL or a graphical interface before being translated

into either SQL-922 or to an object-relational SQL
(SQL-OR) by a preprocessor.

This architecture is compared with three other al-
ternatives : i) Read directly from DBMS, ii) Cache-
mine and iii) User Defined Functions (UDFs).

In the first case, as per its name, data is read di-
rectly from DBMS tuple by tuple. There are two vari-
ants in this category: loose coupling and stored proce-
dure. In the loose coupling approach, the DBMS and
the mining process run in a different address space,
whereas in the stored procedure they run in the same.
Cache mine is a slight variation of (i) where the en-
tire database is read once and the algorithm stores
the relevant data in a side buffer. Finally, UDFs are a
collection of User Defined Functions which are placed
appropriately in the SQL data scan queries. Most of
the processing happens in the UDFs and thus DBMS’s
main goal is to provide tuples to the UDFs.

As for the candidate generation algorithm in SQL,
it resembles the original Apriori implementation.
Each pass k of the algorithm generates a candidate
set Ck from frequent itemset Fk−1 of the previous
pass. This is a two step process, namely the join
step and the prune step. In the join step, a superset
of the candidate itemsets Ck is generated by joining
Fk−1 with itself (Figure 4), while in the prune step,
all itemsets c ∈ Ck, where some subset of c is not in
Fk−1 are deleted. Due to the nature of the SQL, these
two steps can be performed simultaneously as a k-way
join (Figure 5).

Figure 4: Join Step SQL code

Figure 5: Candidate Generation for any k

As was the case with many other algorithms, the
part that takes the most time is counting the support
to find frequent itemsets. Thus, the authors consider

2SQL-92 was the third revision of SQL.

Pattern Set Mining Utrecht University

two different categories of SQL-implementations: (A)
Based on SQL-92 and (B) based on SQL-OR.

3.0.2.1 SQL-92 approaches
The approaches based on SQL-92 consist of “k-way

joins” and “subquery based approaches”.
K-way joins:

In each pass k, the candidate itemsets Ck are joined
with k transaction tables T and then a group by is
executed.Figure 6 shows the SQL query.

Figure 6: K-way SQL query

Subquery based approaches:
A subquery based approach is somewhat more com-
plex than the K-way one. It takes advantage of the
common prefixes between the itemsets in Ck to reduce
the amount of work done during support counting.
This support counting phase is split into a cascade
of k subqueries. The l-th subquery Ql finds all tids
that match the distinct itemsets formed by the first l
columns of Ck (dl). The output of Ql is joined with
T and dl+1 to get Ql+1. Finally, as a last step the
output is obtained by a group-by on the k items to
count support as before. Figure 7 shows the SQL
commands.

Figure 7: Subquery based approach

3.0.2.2 SQL-OR based approaches
SQL-OR based approaches consist of one called

GatherJoin with its 3 variants and another called Ver-
tical.
GatherJoin generates all possible k-item combina-

tions of items contained in a transaction, joins them
with the candidate table Ck and counts the support of

Figure 8: GatherJoin SQL-OR approach

the itemsets by grouping the join result. This concept
is shown in Figure 8. Its three variants GatherCount,
GatherPrune and Horizontal aim to address some of
the drawbacks that it has, with some tradeoffs though,
in space or performance.

Vertical, as described before, is another approach of
the SQL-OR. First, the data table is transformed into
a vertical format by creating for each item a Binary
Large Object (BLOB) containing all the tids that con-
tain the item. Then, the support of the itemsets is
computed by merging together these tid-lists. For ref-
erence, a BLOB is nothing more than a collection of
binary data stored as a single entity. The advantage
of this, is that it can be written as a single SQL query
for any k.

An overall performance comparison of the SQL-OR
approaches declares Vertical as the best option for
higher passes. This, however, does not hold when the
size of the candidate itemsets is too large. Therefore,
a hybrid scheme is adopted which chooses the best of
GatherJoin, GatherCount and Vertical based on some
computational costs incurred by the problem a user
is facing and the algorithms themselves.

Having said all that, the comparison of the three
architectures described before and the ones from Fig-
ure 3 can be made. Timewise Cache-Mine has the
best or almost the best performance in all the cases,
while the Stored-procedure approach has the worst.
The SQL-approach comes second due to the fact that
it takes more time in the second passes compared to
Cache-Mine even if it is significantly faster in the first
pass. But still, it is 1.8 to 3 times better than the
Loose-coupling approach. Spacewise the UDF and the
Stored-procedure require the least amount of space.
Unfortunately, the SQL-approaches require roughly
as much extra storage as the data. No clear winner
can be drawn, as every approach has some trade-offs.
The SQL approach offers some auxiliary advantages
like easier development and maintenance but it might
not be as portable as the Cache-Mine approach across
different database management systems.

Pattern Set Mining 2022

3.0.3 Refining the idea with FP trees

The SQL-based approach made by Sarawagi et al.
(section 3.0.2) was a truly fascinating idea that tried
to implement a theoretical algorithm in a relational
database. However, as it was based on the Apriori
algorithm, it too suffered the problems induced by it
described in section 2.2.

This motivated Shang et al. [24] to use different
approaches for the SQL-based frequent pattern min-
ing problem. Therefore, they present an evaluation
of SQL based frequent pattern mining with a novel
frequent pattern growth (FP -growth) method as de-
scribed in section 2.2. This approach is according
to the authors “highly efficient and scalable for short
and long patterns”, a claim highly accurate by their
results.

However, one might wonder if the concepts of a
FP -tree and a relational table, holding millions of
data, can even be combined together in the first place.
Even though a FP -tree is a compact data structure,
it would be unrealistic to construct it in main memory
in a big-data context. No main memory would be able
to hold such amounts of (compressed) data or, even if
that was the case (e.g. in a highly thought clustered
solution) , it would lose its purpose. However, using
RDBMS’s buffer management systems, this memory
limitation obstacle can be successfully surpassed. A
buffer will only load the necessary parts of the table
required from the algorithm, while leaving the rest
unchanged, saving up precious space.

The authors propose two different approaches for
combining FP -trees with SQL based frequent pattern
mining; namely FP and EFP. In short, FP looks at
each frequent item individually to determine whether
it should be added into the table FP , while EFP gen-
eralises the previous concept by introducing a bigger
but faster structure.

As for the input, the transaction data is trans-
formed into a table T with two column attributes:
transaction identifier (tid) and item identifier (item).
For a given tid, there may be multiple rows corre-
sponding to different items in the transaction. The
number of items per transaction is a variable and is
unknown during table creation time.

For the sake of emphasis, the properties of a FP -
tree are restated once more; the node-link property
(i.e. all possible frequent patterns can be obtained by
following each frequent’s node link) and prefix path
property (i.e. to compute the frequent patterns for a
node ai in a path, only the prefix sub-path of ai in P
need to be accumulated). Since the data stored inside
most likely won’t be unique, a data structure, called
flat table, is used which is highly efficient for this kind
of job.

Having those two properties as a guide, an FP -tree
can be represented by a table FP with three column

attributes; item identifier (item), number of transac-
tions that contain this item in a subtree (count) and
item prefix subtree (path). Notice that the second
node-link property is reflected in the path attribute.

The creation of a FP -tree is a two step process:
Create table T ′ and from that create table FP .

In the first step, the transaction table T is trans-
ferred into table T ′ from which infrequent items are
removed. Since, as mentioned before, the amount of
entries are unknown, size plays a major role in the
cost of joins that include T . However, this can be op-
timised by pruning the non-frequent items from the
transactions after the first pass and inserting them
into table T ′. Then, in the following passes, instead
of joining with T , a join with T ′ is done which is a lot
less computationally expensive.

In the second step, frequent items in T are sorted in
descending order by frequency. Afterwards, for each
item if it does not have the same (attribute) item and
(attribute) path as those in the FP , it is inserted into
the FP as a new item with the count being 1. Oth-
erwise, the FP is updated by increasing the count by
1.

The approach described previously, even though it
is undeniably a fair attempt to tackle this issue, suf-
fers from computational issues since the construction
of an FP -table is an extremely time expensive pro-
cess. Each item must be tested one by one to con-
struct the table ConFP which is rather inefficient.
Therefore, the second approach called EFP aims to
alleviate this issue by introducing an extended FP-
table called EFP-table. EFP-table has the same at-
tributes as FP-table but performs much better than
the latter. Moreover, a FP -table can be easily cre-
ated by an EFP -table with admittedly some minor
space issues.

EFP is obtained by directly transforming frequent
items in transaction table T ′. The path attribute in
EFP -table is set as follows; the path attribute of the
first frequent item i1 is set as null, while the path of
the second frequent item i2 is set as null : i1 and so on.
Figure 9 (b) shows an example of such a EFP -table.
Combining items with identical paths would fetch ta-
ble FP . Figure 9 also shows the aforementioned dif-
ference in size between FP and EFP . However, this
space compromise is clearly unimportant in favour of
increased performance, as EFP , in contrast to FP ,
avoids checking each transaction one by one.

Apart from the implementation, the authors put
the algorithms to the test, comparing both FP and
EFP with various other SQL-implementations such
as the Loose and the k-way join approach described
previously. As expected, the EFP -algorithm man-
aged to outperform the Apriori algorithm when the
support threshold is low, but it did not manage to
achieve this with higher values. Additionally, as ver-
ified by experiments, EFP has superior performance

Pattern Set Mining Utrecht University

Figure 9: table FP and EFP

over FP for reasons mentioned previously. Finally,
based on the investigations, it seems that EFP and
Path approach can get better performance than K-
way join on large data sets or long patterns.

4 Conclusions

Having said all this lengthy narrative, a natural ques-
tion would be if there is more to that. The answer to
this, is that there is always more. Matters pertaining
to pattern set mining are, and will be, on the rise es-
pecially if one considers the amount of data humanity
is producing. Finding patterns in a database, albeit
sounds extremely simple, is an extremely intricate
problem that has generated dozens of approaches to-
wards finding the perfect solution. Meanwhile, as sec-
tion 3 says the field of pattern set mining is much more
broad and overlapping across different fields such as
the one of database management. “And to make an
end is to make a beginning. The end is where we start
from. . . ” as T.S. Eliot wrote [9].

References

[1] Rakesh Agrawal, Tomasz Imieliński, and Arun
Swami. Mining association rules between sets
of items in large databases. SIGMOD Rec.,
22(2):207–216, jun 1993.

[2] Rakesh Agrawal and Ramakrishnan Srikant. Fast
algorithms for mining association rules in large
databases. In Proceedings of the 20th Interna-
tional Conference on Very Large Data Bases,
VLDB ’94, page 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[3] Tijl De Bie. Subjective interestingness in ex-
ploratory data mining. In International Sympo-
sium on Intelligent Data Analysis, pages 19–31.
Springer, 2013.

[4] Mario Boley, Thomas Gärtner, and Henrik
Grosskreutz. Formal concept sampling for count-
ing and threshold-free local pattern mining.
pages 177–188, 04 2010.

[5] Mario Boley, Claudio Lucchese, Daniel Paurat,
and Thomas Gärtner. Direct local pattern sam-
pling by efficient two-step random procedures. In
Proceedings of the 17th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and
Data Mining, KDD ’11, page 582–590, New York,
NY, USA, 2011. Association for Computing Ma-
chinery.

[6] B. Bringmann and A. Zimmermann. The cho-
sen few: On identifying valuable patterns. In
2007 7th IEEE International Conference on Data
Mining (ICDM ’07), pages 63–72, Los Alamitos,
CA, USA, oct 2007. IEEE Computer Society.

[7] Toon Calders and Bart Goethals. Non-derivable
itemset mining. Data Mining and Knowledge
Discovery, 14:171–206, 02 2007.

[8] Tijl De Bie. Maximum entropy models and sub-
jective interestingness: an application to tiles in
binary databases, 2010.

[9] TS Eliot. Little gidding. four quartets. Selected
poems, 1943.

[10] Bonchi F., Giannotti F., Mazzanti A., and Pe-
dreschi D. Exante: Anticipated data reduc-
tion in constrained pattern mining. In PKDD
2003 - 7th European Conference on Principles
of Data Mining and Knowledge Discovery, pp.
59–70, Cavtat-Dubrovnik, Croatia, September
22-26, 2003. Springer, Berlin , Germania, 2003.

[11] Jonas Fischer and Jilles Vreeken. Differentiable
pattern set mining. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Dis-
covery Data Mining, KDD ’21, page 383–392,
New York, NY, USA, 2021. Association for Com-
puting Machinery.

[12] Floris Geerts, Bart Goethals, and Taneli
Mielikäinen. Tiling databases. pages 278–289,
10 2004.

[13] Jiawei Han, Yongjian Fu, Wei Wang, Krzysztof
Koperski, and Osmar Zäıane. Dmql: A data min-
ing query language for relational databases. 09
1999.

[14] Jiawei Han, Jian Pei, and Yiwen Yin. Mining
frequent patterns without candidate generation.
SIGMOD Rec., 29(2):1–12, may 2000.

[15] Jochen Hipp and Ulrich Güntzer. Is pushing con-
straints deeply into the mining algorithms really
what we want? an alternative approach for as-
sociation rule mining. SIGKDD Explor. Newsl.,
4(1):50–55, jun 2002.

Pattern Set Mining 2022

[16] Arno J. Knobbe and Eric K. Y. Ho. Maximally
informative k-itemsets and their efficient discov-
ery. KDD ’06, page 237–244, New York, NY,
USA, 2006. Association for Computing Machin-
ery.

[17] Arno J Knobbe and Eric KY Ho. Maximally in-
formative k-itemsets and their efficient discovery.
In Proceedings of the 12th ACM SIGKDD inter-
national conference on Knowledge discovery and
data mining, pages 237–244, 2006.

[18] Matthijs Leeuwen and Antti Ukkonen. Fast esti-
mation of the pattern frequency spectrum. pages
114–129, 09 2014.

[19] Jefrey Lijffijt, Panagiotis Papapetrou, and Kai
Puolamäki. A statistical significance testing ap-
proach to mining the most informative set of pat-
terns. Data Mining and Knowledge Discovery,
28, 12 2012.

[20] Heikki Mannila, Hannu Toivonen, and A. Inkeri
Verkamo. Discovering frequent episodes in se-
quences. In Usama M. Fayyad and Ramasamy
Uthurusamy, editors, Proceedings of the First
International Conference on Knowledge Discov-
ery and Data Mining (KDD’95), pages 210–215,
United States, August 1995. AAAI Press.

[21] Nicolas Pasquier, Yves Bastide, Rafik Taouil,
and Lotfi Lakhal. Efficient mining of association
rules using closed itemset lattices. Information
Systems, 24(1):25–46, 1999.

[22] Jian Pei, Jiawei Han, and L.V.S. Lakshmanan.
Mining frequent itemsets with convertible con-
straints. In Proceedings 17th International Con-
ference on Data Engineering, pages 433–442,
2001.

[23] Sunita Sarawagi, Shiby Thomas, and Rakesh
Agrawal. Integrating association rule mining
with relational database systems: Alternatives
and implications. SIGMOD ’98, page 343–354,
New York, NY, USA, 1998. Association for Com-
puting Machinery.

[24] Xuequn Shang, Kai-Uwe Sattler, and Ingolf
Geist. Sql based frequent pattern mining with
fp-growth. pages 32–46, 01 2004.

[25] Athanasios Tsiamis. Big data es-
say [unpublished manuscript], thanos-
tsiamis.github.io/assets/pdfs/ Athana-
sios Tsiamis 5223652 BigDataEssay.pdf, April
2022.

[26] Jilles Vreeken, Matthijs Leeuwen, and Arno
Siebes. Krimp: Mining itemsets that compress.
Data Min. Knowl. Discov., 23:169–214, 07 2011.

[27] Geoffrey I. Webb. Self-sufficient itemsets: An
approach to screening potentially interesting as-
sociations between items. ACM Trans. Knowl.
Discov. Data, 4(1), jan 2010.

	Introduction
	Frequent Pattern Mining Approaches
	Frequent item set mining
	Limiting the results
	Constraint pushing
	Missing the forest for the trees
	Condensed representation
	Selecting few to describe the whole with mathematics
	Quantifying subjectiveness
	Pattern Explosion: Revisited

	RDBMS AND PATTERN SET MINING: AN INTERESTING PAIR
	DMQL: A first attempt at formalising the language
	Piecing the puzzle together
	Refining the idea with FP trees

	Conclusions

