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1 INTRODUCTION
In the digital era we are living in, the amount of data people are
using is increasing exponentially. According to the Statista Research
Department [3], the total amount of data created and replicated in
2020 reached a new high of just over 64 zettabytes. To put this into
perspective, from the beginning of the human race to the year 2003,
it is estimated that 5 exabytes of data are created [10] which is only
0.5% of a zettabyte! Data varies not only in size but also in forms
and speed. These forms may include various means such as photos,
videos or even random pieces of byte strings.

Meanwhile, as the Internet of Things (IoT) is gaining a lot more
traction, more and more objects and devices are connected to the
internet, gathering data on customer usage patterns and product
performance. This rapid increase in data production has led to the
use of the term "big data" [5] to describe this new era of massive
data. Although there is no clear definition of what constitutes big
data, they are typically characterized by what is called the five V’s:
Volume, Veracity, Value, Variety, and Velocity [5].

Data cannot be thought as a standalone entity. They are tightly
coupled with the notion of a database, an organised collection of data,
typically controlled by a Database Management System (DBMS).
Specialised systems and frameworks have to be implemented to
facilitate all these enormous amounts of data. Such systems, the so
called data intensive systems, use state-of-the-art technologies to
interact with big data in sizes that would otherwise seem prohibitive.

However, designing solutions for data intensive systems has its
challenges. Decomposing a dataset into partitions such that each
decomposition is highly homogeneous is one of them. Specifically,
we are interested in a decomposition of a dataset 𝐷 to a set of
datasets 𝐷𝑖 , 1≤ 𝑖 ≤ 𝑘 such that the average of the homogeneities
of these sub-datasets is maximized. Homogeneity is quantified by a
function described in section 3. An important feature of decomposing
a dataset into smaller and more similar ones is the ability to identify
what these smaller datasets have in common. Therefore, being able
to query all elements of the same subset is of uttermost importance
for the purpose of this paper.

This is a challenging task for several reasons. Firstly, the proposed
solution should be dataset agnostic, meaning that it should work for
any relational table, so its performance should not be dependent
on the specifics of any particular dataset. Moreover, maintaining
scalability while preserving performance is another important issue,
since the goal is for the solution to work on very large tables.

At a first glance, one might argue that this problem is highly
pointless. A database is nothing more than a collection of data; a

data analyst may as well take a look into the dataset and partition it
appropriately based on their background knowledge.

While the validity of this manual method has its benefits, the
goal of this paper is to tackle this problem from a systems software
perspective. Designing and developing a system that can split the
dataset into similar subsets can have multiple benefits. By using
this framework first, data scientists and experts on the field can
filter the data on some initial assumptions, that of the similarity of
specific attributes. Then, each split can be analysed more in depth;
for example, by business analysts.

The solution followed here, is a search tree approach that is
somewhat similar to that of a decision tree. In short, the database
is split every time into two sub-databases where each child can be
queried based on some attribute. Thus, by definition, it has always
at least one attribute which is pure (i.e. all elements in that attribute
are the same). Results of these method are promising as they shows
that the solution maintains speed without compromising much on
the performance.

2 RELATED WORK
Schkolnick [6] introduced a Clustering Algorithm for Hierarchical
Structures which addressed how to store a hierarchic structure in
order to minimize the expected access time to it. Chang and Cheng
[2] presented a model for structured database decomposition based
on the relational database model. In their paper, they investigated
the decomposition of a database based on the decomposition tree, a
structure with nodes and edges where relations on the edges denote
the steps to decompose the database. The solution proposed in this
paper was heavily inspired by the algorithm in the paper by Chang
and Cheng [2].

To evaluate our proposed solution, two things are necessary: a
baseline solution for comparison, and a homogeneity function that
estimates how homogeneous each decomposition is. The baseline
solution makes use of the K-Means algorithm [7]. The homogeneity
function is heavily inspired by the Gini impurity measure [4]. The al-
gorithm is deeply dependent on Spark [9] which is a multi-language
engine for executing data engineering, data science, and machine
learning on single-node machines or clusters. To increase speed and
performance, Spark’s dataframes were used [1], a concept which
evolves the notion of Spark’s RDD [11], thus allowing the algorithm
to run in parallel, across several nodes.

3 SOLUTION
As hinted before, the main algorithm constitutes of a search tree
implemented in Apache Spark. However, blindly designing an al-
gorithm without comparing it to some other well known algorithm
would serve no purpose; single results would have to be displayed



which wouldn’t show any significance by themselves. Thus, a base-
line solution to the problem is developed as well.

K-means clustering was used as a baseline solution, which is also
implemented in the Spark framework and is extensively used for
grouping elements in a database.

3.1 Infrastructure
The Spark framework was run in a Google Colab environment, which
easily allows distributed computing on Google’s servers. Minimal
modifications to the Spark Context were done due to limitations
from Google’s free version. Nevertheless, the maximum amount of
workers was used with the local[*] command. Other than that, the
necessary dependencies required for spark to run were set, such as
setting the right HOME variable for spark and importing the correct
packages.

3.2 Transforming the database
The database, whatever its contents might be, is not necessarily in
the right format to run K-Means or our algorithm on it. Namely,
the attribute values might not be all numerical. Therefore, the data
were transformed with StringIndexer, a package by Spark, which
gives an increasing number for each distinct class in each attribute
in the dataset. It was also assumed that the input database contains a
header, or labeled column names.

For example, consider the following toy dataset:

Id Color Shape

1 Red Triangle
2 Red Square
3 Green Circle
4 Red Square
5 null Triangle

StringIndexer then encodes the element which would transform the
database into:

IdIndexed ColorIndexed ShapeIndexed

0 0 0
1 0 1
2 1 2
3 0 1
4 2 0

Notice that the column names are changed as well where the
suffix "Indexed" exists at the end of each word. This shouldn’t be of
much concern and is for cleaner code practices.

Addressing the null values is the first obstacle in preprocessing
the data. It was decided to treat null values as their own category
and give them a special value of -999999 before encoding them with
StringIndexer. This value, according to Benford’s law [8], should
have the least impact.

String Indexer gives a unique value for each class in an attribute
based on the frequency of the words. In the example above, "Red"
gets the value 0 as it is the most common, while "id":1 gets the
value 0 as it is the first one among all the id values and all id values
are unique. This method, can now encode arbitrary strings into the
metric space. However, due to the fact that in each new string the

StringIndexer has to check every other string to verify whether it is
a new entry or not, there were some issues regarding heap space.

3.3 Homogeneity function
To measure the similarity of the items in a database a custom homo-
geneity function was used.

The hom function ("hom") can be defined as the average (ℎ𝑜𝑚_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑎𝑡𝑡𝑟 ))
where ℎ𝑜𝑚_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 is defined as:

ℎ𝑜𝑚_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑎𝑡𝑡𝑟 ) =
{
0, if frequency of all elements is 1
𝑚𝑎𝑥 (category_frequency)

𝑙𝑒𝑛𝑔𝑡ℎ (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒) , otherwise
(1)

Informally speaking, the homogeneity of a single attribute is the
relative frequency of the most prevalent value. In the case where
an attribute contains only unique values (e.g. UUIDs), then the
homogeneity of that attribute is by definition zero. On the other
hand, if all values were of a single class (e.g. Color "Red"), then the
homogeneity would be 1. Therefore, the range for the homogeneity
function is [0, 1]. For example, the homogeneity of Figure 3 in the
following pages, is 0.375 = 0+1+0+0+1+0.25

6 where each number in
the nominator is the homogeneity of the attribute (starting from left
to right).

Regarding the actual implementation, the hom_attribute function
takes as an input a dataframe (i.e. dataset) and returns as an output
the homogeneity value of that dataset alongside a dictionary of the
homogeneities of each individual attribute. The reason the algorithm
returns a dictionary will be explained in section 3.5.

3.4 Baseline solution
The most obvious solution, if someone would solve the problem
of clustering, would be to use K-means clustering. K-means would
cluster the data into 𝑘 separate fields and we would have to just
compute the homogeneity of those fields based on the 𝑘 labels it
produced. The only way to query the k clusters would be on the label
alone (e.g. the points belonging to the third cluster). In short, the
algorithm uses the squared euclidean distance as a distance measure
and silhouette score as a metric name to produce the clusters.

Delving into specific details, implementing K-means on Spark is
fairly easy. However, the transformed database described in section
3.2 is not yet in the right state.

Specifically, the data need to be further transformed into vectors in
the R𝑑 space where 𝑑 denotes the number of columns. This process
is quite straightforward with the VectorAssembler package included
in Spark. A nice property of VectorAssembler is that in case a vector
contains a high percentage of zeroes, then it is transformed into a
Sparse Vector, thus saving space and increasing performance.

Afterwards, 𝑘-clusters were computed, where 𝑘 ranges from 2 to
14, and their silhouette score was found. There is no straightforward
way to pick the right amount of clusters and various arguments
can be made for every choice. Figure 1 provides an example of a
silhouette score plot, which often helps guide the selection of 𝑘 .

After K-means clusters the data into 𝑘 clusters we compute the
homogeneity of each cluster with the average(ℎ𝑜𝑚_𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒 (𝑎𝑡𝑡𝑟 ))
described in section 3.3. Then the general homogeneity is computed
as the average of those clusters. The complete code can be found in
Appendix (Figure 10).
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Figure 1: Silhouette Score

Results of the K-Means are presented in section 4.2.

3.5 Algorithm
3.5.1 High Level Overview: As explained before, the main idea
of the treeGrow algorithm is that of a search tree that in each step
splits the database into two sub databases and computes their ho-
mogeneity. The split is done based on a feature which has the max-
imum permitted homogeneity. The word permitted is deliberately
placed here as it made sense not to split the database into very small
databases. After all, 1 tuple databases could be queried perfectly and
would have homogeneity of 1 but it wouldn’t make any sense to be a
distinct decomposition. Thus, users of the program can set their own
hard limit (called HARD_LIMIT), a number which the algorithm
would stop if found itself with less than those rows.

Figure 2 contains a visual example of this novel algorithm. In
that example, the original database is split into two parts based on
the max frequency value of the third column and then (for the left
child) on the max frequency value of the first column. Rectangles
denote the leaves of the tree. The prohibition sign indicates that
hard limit forbids the database to split into sub-databases as they
would create children with less than HARD LIMIT rows. To get the
SQL-queries of the leaves we have to traverse the tree from the root
to the leaves. The leaves are tagged with a specific boolean value to
distinct them from the other nodes in the output. We omit the tree
traversal algorithm from the main implementation as we believe it is
out of the scope of this paper.

Algorithm 1 provides some pseudocode for what the algorithm
is doing. The key point of the algorithm is the working_list which
is nothing more than a queue keeping track of the elements added.
When the queue is empty, it means that no more elements (i.e. sub-
dataframes) are to be processed, so the tree process is complete.
In a random step 𝑘𝑟 of the algorithm, for the head of the queue, it
computes the homogeneity of each attribute of the dataframe and it
passes this result to a list which is reordered in a descending fashion.

Given the (ordered) list returned by the hom function, the algo-
rithm searches to see if there is a split which, when done, does not
violate the hard limit constraint. If there is no such constraint, then

Figure 2: Example of the splitTree algorithm

this means that the dataframe has no other choice than to be a leaf. If
there is, then it searches for the most frequent value and splits based
on that. By construction, the left child will always have the equality
of that value, while the right the inequality.

3.5.2 Implementation details. The following section describes
the implementation details of the aforementioned algorithm in depth.
It is implemented mainly in Python with PySpark. Since the main
concern is dealing with big data, the data structures used are mostly
either PySpark DataFrames or in some fewer cases PySpark RDD’s.
For cleaner code practises, most of the functions related to the tree-
Grow algorithm are wrapped up inside a class.

Arguably, the hom_atr_list is one of the costliest operations in the
whole program. It uses map reduce technologies to count the most
frequent value in each attribute and then expresses it as a percentage
relative to the other values. Algorithm 2 gives a small sample of
the hom process. While its syntax may be complex, its difference
in performance in comparison to pure Python is immense. The hom
function returns a tuple with two things. The first is the hom value of
the dataframe (e.g. 0.65), while the second argument returns a map
which contains the homogeneity of each attribute. The reason for
the second return is purely for convenience and performance. The
whole function can be found in Appendix C.1 (Figure 9).

To easily keep track of the relations between the parent and the
children each node is a class named Node which contains the follow-
ing instance variables: df, feature, left_child, right_child, hom_measure
and leaf. Variable df is the dataframe which this specific node per-
tains to. Variable feature is the attribute the two children were split on.
In the case of leaves, the variable is empty. The variables left_child
and right_child keep track of the relationships between the parent
and the children. In that way, the user can traverse the tree easily to
find the SQL command for a desired leaf. The hom_measure keeps
track of the dataframe’s homogeneity score while the leaf variable is
a boolean structure which verifies whether this particular node is a
leaf or not.
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Algorithm 1: TreeGrow Algorithm
Result: A list containing the nodes of the tree
working_list=[root_node];
tree=[];
HARD_LIMIT=compute_hard_limit();
while working_list is not empty do

current_node = first element in the working_list;
remove first element in the working_list;
(hom_val,hom_atr_list) = compute hom of the dataframe;
ordered_hom_atr = order hom_atr_list map in desc

homogeneity;
isLeaf = True ;
for each attribute in ordered_hom_atr do

if it can pass the HARD LIMIT constraint then
value = groupBy this attribute for the most

frequent value;
left_child = dataframe filtered where attr ==
value;

right_child = dataframe filtered where attr !=
value;

working_list.append(left_child);
working_list.append(right_child);
tree.append(current_node);
isLeaf = False;
break from the for Loop;

end
if isLeaf is True then

tree.append(current_node);
end

end
end
return tree;

Algorithm 2: Homogeneity Sample
x = df_new.rdd.groupByKey() \
.mapValues(list) \
.map(lambda x: (x[0], Counter(x[1]).most_common(1)))\
.map(lambda x: (x[0], x[1][0][1])) \
.map(lambda x: (x[0], x[1] if x[1] > 1 else 0))\
.map(lambda x: (x[0], x[1]/nrows));

4 EXPERIMENTAL EVALUATION
4.1 Datasets
Three kinds of datasets were considered for the experiments: Small,
Medium and Large. Small is the well known titanic dataset which
describes the survival status of individual passengers on the Titanic.
Titanic dataset contains 891 entries.

Medium and Large are samples from title.basics.tsv.gz IMDB
database which contains over 9 millions entries related to the movie
industry1. When sampling the full dataset to create the smaller

1The database can be found at https://www.imdb.com/interfaces/

datasets, a seed was set to the value of 111 to ensure repeatability of
the results.

Medium database contained 0.001 of the original database (8,978
entries) while Large contained 0.01 of the original database (90,141
entries).

A snippet of the medium dataset can be seen in Figure 3. The

Figure 3: Dataset Snippet

dataset contains other attributes as well, which due to space con-
straints are not included in the figure. A snippet of the small dataset
can be found in Appendix (Figure 7).

4.2 Results
All experiments shown in the main paper have been conducted on the
medium dataset. Other experiments can be found in the Appendix
section.

Figure 1 presented above, shows the silhouette score for various
𝑘 values.

In treeGrow we have no direct control of the amount of sub-
datasets (i.e.leaves) the algorithm will create. Adjusting the hard
limit to higher values will obviously create at most as many as the
previous lower value but there are no guarantees for the specific
amount. The only direct comparison between the K-means and the
treeGrow algorithm would be about how the homogeneity fluctuates
based on the hyperparameters of the problem. In the case of tree-
Grow, the hyperparameter would be the hard limit while in 𝑘-Means
the number of clusters. Figure 4 shows exactly that.

Figure 5 shows the homogeneity score relative to the hard limit
with the number of leaves appended to each point in the graph.
Notice how a strict hard limit (in this case 0.05) improves the ho-
mogeneity score while a more lenient one (e.g. 0.25) decreases it.
There is no strictly defined rule on finding the best hard limit on
a dataset. We leave it to the kind discretion of the user to choose
their desired threshold. As a rule of thumb, we believe that values
around 12% maintain a moderate amount of leaves while keeping
the homogeneity score relatively high.

Figure 4: Comparing KMeans with treeGrow

4

https://www.imdb.com/interfaces/


Figure 5: Homogeneity score for treeGrow algorithm

In order to measure how long each command took, we used the
%%𝑡𝑖𝑚𝑒𝑖𝑡 command which measures how long each cell in the note-
book takes to run by reiterating it 5 times and taking the average.
Commands pertaining to the same functionality were grouped to-
gether in the same cell. Naturally, this system isn’t impervious to
objections but it shows a general approximation of the time it took.

Figure 6 shows the running time in seconds. This graph by no
means acts a way to compare the algorithms timewise. That would be
pointless, since a range of few strict hard limits cannot be compared
to a range of some 𝑘 for K-Means. Our purpose is to show, in general,
the running times which should act as a guideline to the problem’s
general time complexity.

Figure 6: Time it took to run various algorithms

5 DISCUSSION
A few points are noteworthy when looking at the results. Figure 4
shows approximately a 10% reduction in the homogeneity value for
the same amount of decompositions between kMeans and treeGrow.
However, we argue that this is not the whole picture.

In the worst case, the algorithm will create half of the nodes (right
children) in which their homogeneity may be as low as possible.
These children, even though they lack one common value for a give
feature, they are similar in another sense; their values for the attribute
based on which the split was made are all different from the value
of the most common feature. Hence, everything can be queried not
based on the label of the cluster they are in, but by something more
powerful, that of the belongingness (or not) in an attribute.

On the other hand, K-means, albeit its higher hom values, it
provides nothing more than a label for each of the entries. As a result,
the clusters have to be processed again to examine their common
point (if one exists at all).

To make this notion more concrete, consider the following ex-
ample. A movie streaming platform offers 4 kinds of subscriptions
for its customers: basic, premium, gold and diamond. Assume in its
most simple form that the algorithm splits the database in two cases.
That of those that have purchased the basic subscription and those
who haven’t. The hom function of this split in the worst case would
be 1+0

2 = 0.5. The right child, albeit its homogeneity score of 0, can
still be considered in a way fully homogeneic as those elements can
be queried where subscription is not basic. As a result, the Data
analytics team can take full advantage of this split and run an ad
campaign on the relevant clientele.

As a future work, we would like to make use of Spark’s internal
packages, namely decision trees which are optimised as best as
possible. In addition to that, we would like to explore other options
as a hom_attr function. Finally, regarding the StringIndexer, we
would like to look into ways to parse the database without running
out of memory when the amount of data is more than a few millions.

6 CONCLUSION
A decision-tree-like novel algorithm is presented which splits the
database into 𝑛 parts where 𝑛 denotes the number of leaves. The algo-
rithm is compared to a baseline solution (K-means) which classifies
the data into 𝑘-clusters.

The splits of the tree are well defined in two ways: the parts
are distinct; that means they don’t contain overlaps (i.e. duplicate
elements) and they can be queried exactly. Due to the second part,
the average homogeneity of the algorithm is lower than that of 𝑘-
means. However, we argue that this number is not the alpha and
omega of the problem. Being able to query the decomposition of
the dataset is very important and is not feasible when using 𝑘-means
clustering.
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Appendices

A DATABASES
A snippet of the Titanic database (i.e. small). The snippet is taken
after processing the null values to -999999. Other attributes exist as
well but due to space constraints were omitted.

Figure 7: Snippet from the small Database

B EXPERIMENTS
B.1 Small Dataset

Figure 8: Homogeneity and amount of leaves created

C IMPLEMENTATION DETAILS

C.1 Hom function
C.1.1 . The homogeneity function that takes advantage of Spark’s
Map Reduce functions.

Figure 9: Homogeneity function

C.1.2 . The homogeneity used to compute the homogeneity for k
clusters from K Means

Figure 10: Homogeneity function for K Means
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