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Abstract18

This paper aims to study a scheduling problem called the vaccine scheduling problem. The objective19

of the paper is to provide exact solutions for small instances in the offline setting and a general20

strategy to deal with the online setting. We propose an algorithm based on ILP modeling for the21

offline setting and an algorithm based on a best-fit heuristic for the online setting. For the latter one,22

we prove a competitive ratio lower bound of lg(n) where n is the number of patients. Furthermore,23

we conduct a series of experiments to test the performance of our proposed algorithms using the test24

instances provided by fellow Utrecht University students and some randomly generated instances.25

As the experiments show, our offline algorithm is able to deal with small instances. For future26

research, we aim at improving the offline algorithm in order to be able to deal with larger instances27

as well as providing an upper bound for the competitive ratio of our proposed online algorithm.28
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1 Introduction33

In this first section of the paper, the vaccine scheduling problem is formally introduced.34

Similar classic scheduling problems are examined and compared against the problem at hand.35

1.1 The vaccine scheduling problem36

Suppose a very contagious unnamed disease has spread in an unnamed country. The national
regulatory authorities want to vaccinate a portion of the population of the country in order
to reach herd immunity. There are n ∈ N citizens eligible to be vaccinated and we will
refer to them as patients. The vaccination is performed using two-phase vaccine jabs. Each
vaccine jab has two doses and a minimum time gap g ∈ Z+ is required between the two
doses. The doses must be administered in a hospital that is suitable for vaccination purposes.
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Each hospital has a number of time slots in which patients can be vaccinated at and can
only attend one patient per time slot. Once a patient gets the first dose at a hospital, he/she
must remain under observation at the same hospital for a certain number of contiguous time
slots. This number is known as the processing time of the first dose and will be denoted by
p1. The same is true about the second dose, and in this case will be denoted by p2. The
processing times p1, p2 ∈ N and are provided by the pharmaceutical company in charge of
manufacturing the vaccine. It is important to note that although a patient must remain in
the same hospital during the processing time of either dose, it is not necessary to administer
both doses in the same hospital. Each patient Pi, i = 1, . . . , n is asked to submit via the
government’s health services web page a list of four numbers:

(ri,1, di,1, αi, li) ∈ N× N× Z+ × N

where,37

ri,1 is the lower bound of the first feasible interval Ii,1 (i.e. the time interval during which38

he/she is available to get the first dose).39

di,1(≥ ri,1) is the upper bound of the first feasible interval Ii,1.40

αi is the patient - dependant delay (i.e. the number of time slots he/she would like to41

wait between the first and second dose in addition to the mandatory time gap g).42

li(≥ p2) is length of the second feasible interval Ii,2.43

Given this information, the system must send back to each patient a list of four numbers:

(ti,1, Hi,1, ti,2, Hi,2) ∈ N4

where,44

ti,1 is the time slot when patient Pi will get the first dose.45

Hi,1 is the hospital number where patient Pi will get the first dose.46

ti,2 is the time slot when patient Pi will get the second dose.47

Hi,2 is the hospital number where patient Pi will get the second dose.48

Each of these numbers are calculated in the following way. The first dose is scheduled at start
time ti,1 ∈ Ii,1 = [ri,1, di,1] in an available hospital Hi,1 such that [ti,1, ti,1 + p1 − 1] ⊆ Ii,1.
Once the first dose is scheduled, the second feasible interval is calculated as follows

Ii,2 = [ti,1 + p1 + g + αi, ti,1 + p1 + g + αi + li − 1].

The second dose is then scheduled at start time ti,2 ∈ Ii,2 in an available hospital Hi,2 such49

that [ti,2, ti,2 + p2 − 1] ⊆ Ii,2.50

51

The objective is to vaccinate all the patients using as less hospitals as possible. We will52

consider two variants of the problem.53

Variant 154

In the first variant of the problem, the global parameters p1, p2, g and the set of jobs

{(r1,1, d1,1, α1, l1), . . . , (rn,1, dn,1, αn, ln)}

are given beforehand. With all of this information, the system must be able to elaborate and55

send to each patient a list of four numbers as we explained before. We will later refer to this56

variant as the offline problem (see section 2).57
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Variant 258

In the second variant of the problem, the global parameters p1, p2, g are given beforehand
but not the jobs. In this case there are n consecutive rounds (one for each patient). At round
i, we obtain patient Pi’s information, i.e.

(ri,1, di,1, αi, li).

The program then has to schedule patient Pi, i.e. give the time ti,1 and hospital Hi,1 when59

and where the first dose is given, the time ti,2 and hospital Hi,2 when and where the second60

dose is given fulfilling the conditions explained earlier. After this, the next round starts with61

the next patient. We will later refer to this variant as the online problem (see section 2).62

63

Research in scheduling problems has been around for a long time and particularly active64

in the past decades. A classic scheduling problem is the bin packing problem (see Garey et65

al [4]). In the bin packing problem, a series of items with sizes less than or equal to one66

are given. The goal is to minimize the amount of one capacity bins needed to pack all of67

the different-size items. For us, the bin packing problem was a staring point on thinking68

about a solution for the vaccine scheduling problem. At the beginning, we thought that69

the problems were similar but then we realised that there are some very big differences70

between the two. In the bin packing problem, the capacity of the bins is finite whereas in71

the vaccine scheduling problem hospitals are assumed to have infinite time slots. Also, in72

the bin packing problem the items are not required to have the same size and no interval73

constraints are imposed. Therefore, we started looking at literature related to scheduling74

problems with interval constraints and no capacity limitations. We then realised that the75

vaccine scheduling problem is complex variant of the machine minimization problem (see76

Chuzhoy et al. [1]). In this problem, a number of jobs ,that need to be scheduled in a certain77

number of machines, is given. Each one of these jobs has a feasible interval inside of which78

must be completed. Also, each machine can only process one job at a time. The goal is to79

minimize the amount of machines needed for carrying out this scheduling task. In the case80

where all of the information with respect to the jobs is given beforehand, the problem is81

solved via linear programming (see definition 10 in section 2). This gave us the inspiration82

that variant 1 of the vaccine scheduling problem could be solved using the same technique.83

In the case where jobs are revealed sequentially (see Devanur et al. [2]) an algorithm based84

on a heuristic criteria is used to solve the problem. This gave us the idea of using a similar85

technique for solving variant 2 of the vaccine scheduling problem. In this paper we propose86

solutions for both variants of the vaccine scheduling problem using as a starting point the87

problems described above.88

2 Preliminaries89

In this section we introduce a series of definitions that will make it easier to contextualize the90

vaccine scheduling problem and will lay the ground for better understanding of the following91

sections.92

I Definition 1. An optimization problem Π consists of a set of instances or jobs J , a
set of feasible solutions O, and a cost function

cost : O 7−→ R.

Every instance J ∈ J is a sequence of requests J = (x1, x2, . . . , xn) and every feasible93

solution O ∈ OJ ⊂ O is a sequence of answers O = (y1, y2, . . . , yn), where n ∈ N. Note94
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that O =
⋃
J∈J OJ . Given an instance J and a corresponding feasible solution O ∈ OJ , the95

cost associated with solution O is denoted by cost(O). Whether the goal is to minimize or96

maximize the cost function, optimization problems can be further divided into minimization97

and maximization problems.98

I Definition 2. An optimal solution for an instance J ∈ J of a minimization (optim-
ization) problem Π as in 1 is a solution OPT (J) ∈ OJ such that,

cost(OPT (J)) = min
O∈OJ

cost(O).

i.e., an optimal solution for a minimization problem is a feasible solution that obtains the99

minimum cost.100

I Definition 3. An optimal solution for an instance J ∈ J of a maximization (optim-
ization) problem Π as in 1 is a solution OPT (J) ∈ OJ such that,

cost(OPT (J)) = max
O∈OJ

cost(O).

i.e., an optimal solution for a maximization problem is a feasible solution that obtains the101

maximum cost.102

I Definition 4. An offline problem is an optimization problem Π as in 1 such that the set103

of instances J is available all at once.104

I Definition 5. An online problem is an optimization problem Π as in 1 such that the105

input instances J ∈ J are revealed sequentially.106

I Definition 6. An offline algorithm is a rule to solve an offline problem Π as in 4. Note107

that due to the nature of offline problems, an offline algorithm is allowed to consider the108

entire set of instances J to compute the optimal solution of problem Π.109

I Definition 7. An online algorithm is a rule to solve an online problem Π as in 5. Note110

that due to the nature of online problems, an online algorithm must make a decision upon the111

arrival of each request J ∈ J without knowledge about the future. Moreover, the decisions112

are irrevocable. That is, the decisions are permanent and cannot be changed afterwards.113

I Definition 8. Consider a minimization online problem Π. An online algorithm ALG is
c-competitive if

∃α ∈ R : ∀ J ∈ J , cost(ALG(J)) ≤ c · cost(OPT (J)) + α.

i.e., there exists a constant α such that for every finite instance J ∈ J the cost incurred by114

the online algorithm ALG is bounded by c times the cost incurred by the optimal solution.115

I Definition 9. Consider a minimization online problem Π and an online algorithm ALG.
If there exists an instance J such that

cost(ALG(J))
cost(OPT (J)) ≥ l

for some constant l ∈ R, by definition 8 we know that, ALG cannot be c-competitive for any116

c < l. We call the constant l ∈ R a competitive ratio lower bound of the online algorithm117

ALG.118
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I Definition 10. Consider a minimization offline problem Π. The linear programming
formulation or LP formulation of problem Π is,

min

n∑
i=1

cixi,

subject to119

n∑
i=1

ai1xi ≤ b1,120

...121

n∑
i=1

aimxi ≤ bm,122

xi ≥ 0, ∀ i ∈ {1, . . . , n}.123
124

The LP formulation of offline minimization problem Π is a way of writing down the problem125

such that the solution is encoded by n ∈ N variables x1, . . . , xn called decision variables126

with associated costs c1, . . . , cn and the objective is to minimize the total cost. Therefore,127

the objective function is given by the expression min
∑n
i=1 cixi. The n decision variables128

are subject to m ∈ N constraints of the form
∑n
i=1 aijxi ≤ bj, where aij , bj ∈ R; as well129

as n domain constraints, xi ≥ 0. An optimal solution in this context is any solution that130

satisfies all the constraints and achieves minimal cost.131

I Definition 11. Consider a minimization offline problem Π. The integer linear pro-
gramming formulation or ILP formulation of problem Π is,

min

n∑
i=1

cixi,

subject to132

n∑
i=1

ai1xi ≤ b1,133

...134

n∑
i=1

aimxi ≤ bm,135

xi ∈ Z+, ∀ i ∈ {1, . . . , n}.136
137

Note that the ILP formulation of offline minimization problem Π only differs from the LP138

formulation in the n domain constraints. In the case of ILP the decision variables xi are139

forced to be non negative integers.140

It is important to note that linear programs are very efficiently solvable. In the other hand,141

integer linear programs are not. Nevertheless, there are techniques of solving integer linear142

programs like branch and bound. A major advantage of modeling a given problem as an143

LP or ILP is that there exist many available solvers. Therefore, given a minimization offline144

problem Π, building an offline algorithm ALG to solve the problem could be achieved by145

giving an LP or ILP formulation of Π. The algorithm ALG would be described by the LP or146

ILP formulation plus a state-of-the-art solver.147
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All the concepts introduced in this section now allow us to better contextualize the148

vaccine scheduling problem described in section 1. In fact, the vaccine scheduling problem is149

a minimization problem that comes in two flavours. variant 1 of the problem is an offline150

minimization problem, and variant 2 of the problem is an online minimization problem. In151

the following sections we aim at giving two algorithms, one to solve the offline version of152

vaccine scheduling and one to solve the online version of vaccine scheduling.153

3 Proposed solution for the offline setting154

This section is dedicated to the offline version of the vaccine scheduling problem. As we155

discussed in section 2, modeling our problem as an ILP would be enough in the offline setting156

to obtain an offline algorithm.157

3.1 Summary of the problem158

In the first place, we briefly summarize the problem described in Section 1 and create159

appropriate parameters and decision variables to formulate the ILP.160

Data161

n patients to be vaccinated.162

n potential hospitals where patients could be vaccinated at.163

T time intervals per hospital on which patients could be attended on.164

Each patient must get two doses.165

Each hospital can only process 1 patient per time slot.166

Global parameters167

Processing time of the first dose p1 ≥ 1.168

Processing time of the second dose p2 ≥ 1.169

Mandatory time gap between the first and the second doses g.170

Patient-dependent parameters171

The patient-dependent lower bound of the first dose feasible interval ri,1.172

The patient-dependent upper bound of the first dose feasible interval di,1.173

The patient-dependent delay αi where αi ≥ 0.174

The patient-dependent (second dose) feasible interval length li where li ≥ p2.175

With this information, we define the patient-dependant parameter ait that models if patient
Pi, i ∈ {1, . . . , n} CAN GET the first dose at time slot t ∈ {1, . . . , T}.

ait :=
{

1 if ri,1 ≤ t ≤ di,1 − p1 + 1,
0 otherwise.

3.2 ILP Formulation176

Decision variables177

We define the following decision variables,178
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xj =
{

1 if hospital Hj IS used for vaccination purposes,
0 otherwise.

179

180

yitj =
{

1 if patient Pi GETS first dose at time t in hospital Hj ,

0 otherwise.
181

182

zitj =
{

1 if patient i GETS second dose at time t in hospital Hj ,

0 otherwise.
183

184

Here, i ∈ {1, . . . , n}, j ∈ {1, . . . , n} and t ∈ {1, . . . , T}.185

Objective function186

The objective is the minimization of the number of hospitals needed to carry out the
vaccination. Therefore the objective function becomes

min
n∑
j=1

xj .

Constraints187

T∑
t=1

n∑
j=1

yitj = 1, ∀ i ∈ {1 . . . , n}, (1)188

189

T∑
t=1

n∑
j=1

zitj = 1, ∀ i ∈ {1 . . . , n}, (2)190

191

n∑
i=1

 t∑
k=t−p1+1

yikj +
t∑

k=t−p2+1
zikj

 ≤ 1, ∀ t ∈ {1, . . . , T}, j ∈ {1 . . . , n}, (3)192

193

yitj ≤ aitxj , ∀ i ∈ {1 . . . , n}, t ∈ {1, . . . , T}, j ∈ {1 . . . , n}, (4)194

195

n∑
j=1

zitj ≤
n∑
j=1

 t−p1−g−αi∑
k=t−p1−g−αi−li+p2

yikj

 , ∀ t ∈ {1, . . . , T}, i ∈ {1, . . . , n}, (5)196

197

zitj ≤ xj , ∀ i ∈ {1 . . . , n}, t ∈ {1, . . . , T}, j ∈ {1 . . . , n}, (6)198

199

xj+1 ≤ xj , ∀ j ∈ {1 . . . , n− 1}, (7)200

201

xj , yitj , zitj ∈ {0, 1}, ∀ i ∈ {1 . . . , n}, t ∈ {1, . . . , T}, j ∈ {1 . . . , n}. (8)202
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Description of the constraints203

(1) Each patient gets the first dose of the vaccine exactly once. For each patient Pi we add204

up the decision variables yitj over all time slots and over all hospitals. This sum has to205

be equal to one in order to make the desired condition hold.206

207

(2) Each patient gets the second dose of the vaccine exactly once. For each patient Pi we208

add up the decision variables zitj over all time slots and over all hospitals. This sum has209

to be equal to one in order to make the desired condition hold.210

211

(3) Each hospital can only process one patient at a time. For each hospital Hj and for each
time slot t we add up the decision variables yikj and zikj summing over all patients and
over all time slots k ∈ {t−p1 + 1, . . . , t} and k ∈ {t−p2 + 1, . . . , t} respectively. If patient
Pi gets the first dose at hospital Hj then yiti,1j = 1. But recall that he/she must remain
in hospital Hj for p1 contiguous time slots, i.e. hospital Hj should have time interval
[ti,1, ti,1 + p1] reserved for patient Pi. Similarly, if patient Pi gets the second dose at
hospital Hj then ziti,2j = 1. But recall that he/she must remain in hospital Hj for p2
contiguous time slots, i.e. hospital Hj should have time interval [ti,2, ti,2 + p2] reserved
for patient Pi. In this case, the following two conditions hold

t∑
k=t−p1+1

yikj = 1, ∀ t ∈ [ti,1, ti,1 + p1],

t∑
k=t−p2+1

zikj = 1, ∀ t ∈ [ti,2, ti,2 + p2].

Therefore, if we want [ti,1, ti,1 + p1] ∩ [ti,2, ti,2 + p2] = ∅ we have to impose,

t∑
k=t−p1+1

yikj +
t∑

k=t−p2+1
zikj ≤ 1, ∀ t ∈ {1, . . . , T}.

To take into account the information from all patients and ensure that

[ti,m, ti,m + pm] ∩ [ti,n, ti,n + pn] = ∅

(i.e. any 2 intervals chosen are disjoint) for every choice n,m ∈ {1, 2}, i ∈ {1, . . . , n}, it
suffices to sum over all patients. This way we obtain the desired equation

n∑
i=1

 t∑
k=t−p1+1

yikj +
t∑

k=t−p2+1
zikj

 ≤ 1, ∀ t ∈ {1, . . . , T}.

To take into account all of the hospitals, it suffices to consider the above equation212

∀ j ∈ {1 . . . , n}.213

214

(4) A patient can only get the first dose when he is available and in an existing hospital.215

216

(5) A patient can only get the second dose when he is available and when he already has
received the first dose. Constraint (5) is built based on two observations. First, note that
by summing over all hospitals we merge the n discrete timelines (one for each hospital)
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into a single timeline. Second, note that if patient Pi is first-dose vaccinated at time ti,1
then

t−p1−g−αi∑
k=t−p1−g−αi−li+p2

yikj = 1, ∀ t ∈ [ti,1 + p1 + g+ αi, ti,1 + p1 + g+ αi + li − p2] ⊆ Ii,2.

Combining both observations we obtain equation (5).

n∑
j=1

zitj ≤
n∑
j=1

 t−p1−g−αi∑
k=t−p1−g−αi−li+p2

yikj

 .

Looking at a single discrete timeline, equation (5) imposes that the possible time intervals217

t where the decision variables zitj could take the value 1 are precisely those time slots218

t ∈ Ii,2 such that [t, t + p2] ⊆ Ii,2. Note also that by construction, equation (5) forces219

every patient to be first-dose vaccinated before being second-dose vaccinated.220

(6) A patient can only get the second dose in an existing hospital. Note that both equations221

(6) and (5) are needed to impose for the second dose the same constraint as (4) alone222

imposes for the first dose. This has to do with the fact that availability for the first dose223

is a parameter while availability for the second dose is first-dose dependant and therefore224

a variable. Thus, a parameter for availability for the second dose cannot be defined from225

the data.226

227

(7) Hospital Hj must be used before using Hj+1. The implementation chosen assumes that228

there exists as many hospitals as patients and minimizes the number of hospitals used229

for vaccination purposes. In order to "change" the status of a hospital from "regular" to230

"used for vaccination" in increasing order we must add this constraint. This way we avoid231

outputs like: The set of patients can all get vaccinated at a the single hospital H3. In this232

case the program should return something like: The set of patients can all get vaccinated233

at a the single hospital H1.234

235

(8) Integrality.236

237

4 Proposed solution for the online setting238

This section is dedicated to the online version of the vaccine scheduling problem. As we239

discussed in section 2, we propose an algorithm based on a heuristic. Due to the nature of240

online machine minimization scheduling problems it is not guaranteed that our algorithm241

is able to make the optimal choice when scheduling a patient. E.g. when a patient gets242

planned, the subsequent patient may conflict (partially) with the existing planning due to an243

arbitrary planning decision that the algorithm made. Instead, we may be able to minimise244

the chance of a new patient conflicting with the existing schedule by planning the patients245

according to a certain heuristic. This will in turn reduce the need to open new hospitals.246

4.1 Proposed heuristic247

Diepen et al. [3] present an optimization algorithm for creating a gate planning. They248

successfully use a cost heuristic to increase robustness of the schedule to account for potential249

delays occurring during operations. We will construct a heuristic in the same spirit, which250

will attempt to maximise the size of ’free intervals’ in the schedule.251
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Let us define a free interval to be a uninterrupted sequence of time slots in which no252

patient has been assigned. We reason that a larger free interval has a higher probability to253

accommodate a new patient. Let flexibility be a measure based on a set of free intervals I,254

noted as f(I). We use the following function to compute the flexibility of I:255

f(I) =
∑

[i,j]∈I

tan−1 (j − i) (9)256

We remark the following desirable properties of the flexibility function:257

258

I Remark 12. Larger intervals have a higher flexibility: E.g. f([0, 10]) > f([0, 9]).259

260

I Remark 13. Flexibility of intervals can be summed to compare their total flexibility:261

E.g. f({[0, 4], [6, 10]}) = f([0, 4]) + f([6, 10])262

263

I Remark 14. A change in the interval length is weighted heavier for a small interval264

compared to a large interval: E.g. f([0, 3])− f([0, 2]) > f([0, 10])− f([0, 9])265

Some additional edge cases exist for which flexibility needs to be determined separately:266

1. Free intervals may appear of a length smaller than the lowest vaccine duration.267

2. A patient may be able to be planned directly after another patient.268

The first edge case should be avoided as leaving a free interval in which no future269

patients can be scheduled is inefficient, potentially resulting in the final planning requiring270

more hospitals. To avoid this, we add the condition that any interval [i, j] for which271

j − i < min(p1, p2) will have f([i, j]) = 0. The second edge case is preferred as planning the272

patient at the start or end of a free interval avoids splitting the interval into two smaller273

intervals that are less flexible individually. Therefore, when a permutation of intervals274

is evaluated in which a dose is planned seamlessly at the start or end of an interval an275

additional constant α > π
2 is added to the flexibility score. Choosing α = π

2 ensures that the276

feasible options where a patient doesn’t split existing intervals yield higher flexibility scores277

than options where patients do split intervals, even when interval lengths approach infinity.278

The modified equation that includes the conditional constant α is given by the following279

expression.280

f(I) =
∑

[i,j]∈I

tan−1 (j − i) + α (10)281

4.2 Planning Algorithm282

We propose two algorithms featuring the flexibility heuristic as mentioned in section 4.1.283

Listing 1 in appendix 7 shows the high level execution of a sequential planning algorithm.284

The planning procedure receives a set S containing free intervals per machine, as well as285

information about the patient’s availability and proceeds to find the time slot best suited286

to administer the first vaccine dose. After this time slot has been determined, it is planned287

into the schedule and won’t be altered. Then the second dose is planned based on the288

feasible interval dependent on the time slot the first dose is planned. If either the first or289

second dose cannot be planned due to conflicts in the existing schedule the planning of the290

specific dose will be repeated with a new machine added to S, the new machine features291

a completely empty schedule and is therefore guaranteed to be able to accommodate the292

dose(s) in question.293
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Listing 2 shows the execution of an integrated version of the planning algorithm. The294

distinct difference compared to online algorithm 1 is that the first and second dose are295

planned at the same time. Due to this it is assumed that a more optimal remaining flexibility296

of the schedule is achieved, compared to Listing 1. If our heuristic is sound, this should297

in turn lead to fewer machines being required when both algorithms schedule an identical298

instance.299

4.3 Bound on competitiveness300

We present a lower bound on the competitive ratio by means of a worst-case adversarial301

input. Consider the following scheduling problem where we need to plan only one vaccine per302

patient, with a vaccination time of p1. We define a (finite) list heuristic input J = {j1, . . . , jn}303

with n jobs. We set T = n(p1 + ε) where T is the latest time slot that the algorithm will304

consider to plan a job. Every job ji ∈ J , has a deadline di = T . The release time for each305

job is dependent on its position in the list. If we let ri be the release time of job ji then,306

ri = p1(i− 1) + ε i where 0 < ε < p1, for all ji ∈ J .307

ALG schedule

M1 jk jk−1 ... j2 j1

M2 ji ... jk+1

Ml−1 jn−1 jn−2

Ml jn

OPT schedule

M1 ε j1 ε j2 ε ... ε ji ε ... ε jn

Figure 1 Comparison worst-case ALG and OPT performance

The algorithm will, based on the flexibility heuristic mentioned in the previous section,308

prefer to plan time slots that seamlessly connect to each other (i.e no idle time slots). Given309

the list heuristic starting with job j1, this job will be planned towards the end of the schedule,310

as d1 forms a seamless connection with the last possible time slot T . From this we can plan311

subsequent jobs, placing them back to front in the schedule without creating any new gaps.312

I Lemma 15. For two jobs ja and jb on the same machine Mm, job ja will be planned later313

than jb, given b < a.314

Proof. Follows from the list heuristic. J315

I Lemma 16. Per machine, subsequent jobs are ordered in non-ascending order of their316

release time.317

Proof. With tb being the time slot that jb is planned on machine Mm job ja can be planned318

on Mm in the interval [ra, tb − p1) where b < a. Follows from Lemma 15. J319
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The algorithm can continue to repeat this step, until it encounters a job with a deadline320

later than the time slot the latest job has been planned. When encountering this job the321

algorithm can take no other action than to plan the current job on a new machine. The322

algorithm will continue prepending jobs to this machine until it encounters a new job with323

conflicting release time.324

I Lemma 17. A new machine Mm+1 is introduced when a job ja has a later release time325

than time slot of the first scheduled job on Mm.326

Proof. Follows from algorithm operation. J327

I Lemma 18. The first job scheduled on Mb has a later release time than the first job on328

Ma where a < b.329

Proof. When a new machine is introduced this implies that the new job ji has a later release330

time than the planned time for the previous job, this follows from Lemma 17. Lemma 16331

ensures that subsequently planned jobs feature later release times than ji. J332

I Lemma 19. Ml has a single job jn scheduled.333

Proof. The last job jn can only be planned in the interval [(n− 1)× p1 + εn, n(p1 + ε)] =334

[T − p1, T ], following from the list heuristic. Due to the algorithm this interval will already335

be occupied on all previous machines, therefore jn will be assigned to a new machine. J336

We argue that this is the worst possible assignment our algorithm can make based on the337

following exchange argument. Suppose we pick machine Mc and Ml where c 6= l. The first338

job ja scheduled in Mc has a later release time than the last job jb on Mc, following from339

Lemma 16. The only job jn scheduled in Ml has the latest release time possible: T − p1.340

Due to ra > rb we could schedule jb before ja on Mc. This now creates a vacant interval341

[T − p1, T ] on Mc. By now placing jn on Mc we have reduced the number of machines in342

the solution by 1, making the solution closer to optimal. When ε approaches 0 we get the343

following distribution of jobs per machine: M1 = 1
2 of all jobs, M2 = 1

22 , Mm = 1
2m , etc. The344

last machine contains only 1 job: jn accounting for 1
n = 1

2lg(n) jobs, we can therefore derive345

the number of machines l as l = lg(n). This in turn proves a lower bound on the competitive346

ratio of lg(n).347

We can expand the input to schedule a second dose with duration p2 using the following348

input: We redefine T1 = 2k(p1 + ε), T2 = 2k(p2 + ε), and T = T1 + T2. Each job ji has a349

release time ri = p1(i− 1) + ε i, first deadline ri = T1, a pause `i = T2 and second interval350

ti = 1. Since the scheduling of the second dose is dependent on the first dose the algorithm351

will proceed to plan jobs the same as the single dose instance. The second dose’s interval352

allows for only one time slot to be planned, making it fully dependent on the decision of how353

to plan the first dose. This causes no additional scheduling conflicts that are exclusive to354

planning the second dose, and therefore no additional machines are required compared to the355

single dose instance. The lower bound on the competitive ratio for this two-dose instance is356

therefore lg(n) as well.357

5 Experimental results358

In this section we will explain some experiments that we conducted in order to test our359

proposed online and offline algorithms.360
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5.1 Technical specifications361

The programming language of choice in order to implement the online and the offline362

algorithms was Python. The code was run on Windows 10. More specifically,363

The offline algorithm was run on an 11th Gen Intel(R) Core(TM) i5-1135G7 @ 2.40GHz -364

2.42 GHz. Memory utilization varied and it exceeded 16 GBs for some cases.365

The online algorithm was run on a Ryzen 9 5900X@4.40GHz with an average 6% CPU366

utilization. Memory utilization did not exceed 150MB.367

It is important to note that for the offline algorithm program we reproduced the ILP368

formulation of the problem and then used an ILP solver from OR− Tools, an open source369

software suite for optimization made by Google engineers.370

5.2 Offline Algorithm371

To see how well our proposed offline algorithm performed we tested it against some of the372

test instances submitted by fellow Utrecht University students as well as against some test373

cases generated by a random test case function we implemented.374

5.2.1 Submitted test instances375

The test cases submitted by our fellow Utrecht University students vary in the amount of376

patients n that have to be scheduled with the smallest one having to serve 0 patients and377

the biggest one having to serve a million patients. The following graphs show for some of378

the test instances the results that our offline algorithm achieves as well as the time taken to379

reach the solution.380

381

Figure 2 Hospitals used in various test
cases instances

Figure 3 Time taken after computing each
variable/constrainta

a Test case with 0 patients is not displayed in
the figure as the time it takes is less than the
process can actually measure

In Figure 2 the logarithmic scale was used to show the difference in order of magnitude382

between some simpler cases (e.g.one with 2 patients such as 2-1 and 10 patients such as 10-3).383

We found out that for our proposed offline algorithm there is a cutoff at n = 50 on the384

amount of memory we can use on the computer. Figure 4 shows the amount of memory385

our program uses when running the test cases submitted by our fellow Utrecht University386

students. We omitted the files where the RAM exceeded 16 GBs as it crashed our computer.387

https://developers.google.com/optimization


14 INFOMADS Group Project Report

Figure 4 Memory Consumption of OR-Tools after each variable assignment for different test
cases

It is clear from the figure that the decision variables xj , yitj and zitj impose a heavy388

burden in the space complexity of the ILP increasing the memory needed by ten times.1389

390

5.2.2 Random-generated test instances391

To further test our offline algorithm, we developed a random test case instance generator392

function. This function takes as an input the variables of the ILP that we want to keep fixed393

(e.g. p1, p2 , g and/or n ) and produces random values taken from the uniform distribution394

for the patient dependant parameters. We try to keep the values relatively small because395

as we found out testing our program against the submitted instances there is a cutoff at396

n = 50 patients on the amount of memory we can use on our computer. In order to see397

the algorithm’s performance on the random generated test instances, we decided to run398

the program repetitively 31 times increasing by 1 the number of patients each time. The399

obtained results are shown in the figures below.400

1 Test case with 0 patients is not displayed in the figure as the memory it takes is less than the process
can actually measure
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Figure 5 Hospitals used when p1 = p2 = 1,
g = 0, ri,1 = random int(1,50), di,1 = ri,1 +5,
αi = random int(1,20) , li= 2.

Figure 6 Time taken after computing each
variable/constraint.

Figure 7 Hospitals used when p1 = 1,
p2 = 2, g = 0, ri,1 = random int(1,50), di,1

= ri,1 + 5, αi = random int(1,20), li = 2.

Figure 8 Time taken after computing each
variable/constraint.

Figure 9 Hospitals needed when p1 = 1,
p2 = 2, g = 6, ri,1 = random int(1,50) , di,1

= ri,1 + 5 , αi = 0 , li = 2.

Figure 10 Time taken after computing
each variable/constraint.
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Figure 11 Hospitals used when p1 = 1,
p2 = 5, g = 0, ri,1 = random int(1,50), di,1

= ri,1, αi = random int(1,20) , li = 5.

Figure 12 Time taken after computing
each variable/constraint.

Explanation of results401

Figure 5 shows the results when considering the values: p1 = p2 = 1, g = 0, ri,1 = random402

int(1,50), di,1 = ri,1 + 5, αi = random int(1,20) , li= 2. In this situation, patients have403

freedom of choosing when they want to receive the first dose in a range of 50 time slots404

as well as their desired delay until they get the second dose in a range of 20 time slots.405

We impose that p1 = p2 = 1 and g = 0 to simplify the experiment and we left a bit of406

room for the doses to be allocated inside the feasible intervals |Ii,1| = 5 and |Ii,2| = li = 2.407

This way the algorithm will have a more freedom of allocating patient doses inside of408

their correspondent feasible intervals. As we expected, (see Figure 5) the number of409

hospitals increases as the number of patients increase. But since the size of feasible410

intervals is larger than the processing times of the doses, the algorithm is able to exploit411

it and allocate patients in a reasonably small amount of hospitals. Again, an expected412

result. Figure 6 shows the cumulative time taken by the program to reach the solu-413

tion. We can observe that the running time is quite fast (a little over 12’ in the worst case).414

415

Figure 7 shows the results when considering the values: p1 = 1, p2 = 2, g = 0, ri,1 =416

random int(1,50), di,1 = ri,1 + 5, αi = random int(1,20), li = 2. In this situation, patients417

have freedom of choosing when they want to receive the first dose in a range of 50 time418

slots as well as their desired delay until they get the second dose in a range of 20 time419

slots as in the previous case. We impose that p1 = 1, p2 = 2 and g = 0. In this case we420

forced the processing time of the second dose to be equal to the length of the second421

feasible interval for each patient, i.e. |Ii,2| = li = 2. This way the algorithm will have less422

freedom of allocating patient doses inside of their correspondent feasible intervals. As423

we expected, (see Figure 7) the number of hospitals increases as the number of patients424

increase faster than in the previous case. Since the size of the second feasible interval425

equals the processing of the second dose, the algorithm has to deal with a very restrictive426

situation and therefore needs more hospitals to allocate all patients. Again, an expected427

result. Figure 8 shows the cumulative time taken by the program to reach the solu-428

tion. We can observe that the running time is quite fast (a little over 10’ in the worst case).429

430

Figure 9 shows the results when considering the values: p1 = 1, p2 = 2, g = 6, ri,1 =431

random int(1,50) , di,1 = ri,1 + 5 , αi = 0 , li = 2. In this situation, patients have432

freedom of choosing when they want to receive the first dose in a range of 50 time slots433
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but they don’t have a choice on delaying the second dose more than the mandatory gap g434

which we have set to be 6 time slots. We impose that p1 = 1 and p2 = 2. In this case, as435

in the previous one we forced the processing time of the second dose to be equal to the436

length of the second feasible interval for each patient, i.e. |Ii,2| = li = 2. The algorithm437

will have less freedom of allocating patient doses inside of their correspondent feasible438

intervals but the two doses will be evenly spaced out. As we expected, (see Figure 9)439

the number of hospitals increases as the number of patients increase like in the previous440

case. It is really important to note that since the patient dependant delay is the same for441

every patient (αi = 0 and g = 6), the algorithm is able to exploit this fact and allocate442

patients in less hospitals when we compare it against the previous case. Figure 10 shows443

the cumulative time taken by the program to reach the solution. We can observe that444

the running time is quite fast (a little under 10’ in the worst case).445

Figure 11 shows the results when considering the values: p1 = 1, p2 = 5, g = 0, ri,1 =446

random int(1,50), di,1 = ri,1, αi = random int(1,20) , li = 5. In this situation, patients447

have freedom of choosing when they want to receive the first dose in a range of 50 time448

slots as well as their desired delay until they get the second dose in a range of 20 time449

slots. We impose that p1 = 1, p2 = 5 and g = 0. In this case, we forced the processing450

time of the first and the second dose to be equal to the length of the first and the second451

feasible interval respectively. This way the algorithm will not have any freedom when452

allocating patient doses inside of their correspondent feasible intervals. Because li = 5453

is big compared range of values in which patients can decide where to get vaccinated454

we expect the algorithm in this situation to exhibit a linear or almost linear relation455

between the patients and number of hospitals. As we expected, (see Figure 11) the456

number of hospitals increases as the number of patients increase linearly. Imposing such457

rigid restrictions force the optimal solution to take 1 hospital per patient. Figure 12458

shows the cumulative time taken by the program to reach the solution. We can observe459

that the running time is quite fast (a little over 14’ in the worst case).460

We can conclude from this series of experiments that the offline algorithm proposed exhibits461

the expected behaviour in a wide range of situations.462

5.3 Online Algorithm Results463

This section we explore the performance of our proposed online algorithm. In the first place,464

we present a benchmark comparison between the two implementations of the online algorithm465

as discussed in section 4.2. In the second place, we present a comparison between the offline466

and online algorithm on a number of offline instances that where adapted to the online467

setting when run in the online algorithm. Last, we discuss how the two implementations468

behave on some of the online-specific instances.469

5.3.1 Online benchmark results470

The online implementations were timed on solving 50 randomly generated instances. In-471

dividual instances were generated using Python’s builtin random class. Parameters were472

uniformly randomly chosen in the range of [1, 100] for p1, p2, g. For patient i the availability has473

been uniformly randomly generated in the following range: ri = [1, 100], di = ri+p1 +[1, 100],474

αi = [0, 100], and `i = p2 + [1, 100].475

Algorithm 1 performs relatively well in terms of execution time, while algorithm 2 yields476

schedules requiring fewer hospitals. As can be seen in figure 13. A major issue for algorithm477

2 is the second dose interval is dependent on when the first dose is scheduled. In its current478
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Figure 13 Average processing time (left) and maximum hospitals (right) across 50 random
instances.

implementation algorithm 2 has to collect all free intervals for the first dose interval of479

patient i: [ri, di]. Then, due to only committing to planning once the algorithm has found480

the optimal time slots for both doses, the possible time slots in which the second dose can be481

planned lies in the range [ri + p1 + g + αi, di + p1 + g + αi + `i]. This leads to a larger set of482

feasible time slots that need to be evaluated compared to algorithm 1. Combined with the483

nested iteration of intervals for both first and second dose this leads to comparatively bigger484

performance hits when encountering patients featuring more flexible schedules.485

5.3.2 Comparison to offline results486

Both online algorithms seem to be able to schedule the instances consistently in under a487

second on the tested offline instances. Table 1 shows a select set of offline instances tested,488

and the performance of both online algorithms on the correspondent adaptations. The489

number of hospitals the ILP solution uses is included for comparison. With the ILP solution490

as reference, algorithm 2 is able schedule patients optimally on a few of the instances. On491

instances with more patients the amount of hospitals required to schedule these patients492

tends to diverge from the number found by the ILP, Algorithm 1 often requires more hospitals493

than algorithm 2, but may perform better on certain instances that are punishing to the494

execution times of algorithm 2. Examples of such instances are 5-5, which caused algorithm 2495

to time out by taking more than 120 seconds, yet algorithm 1 was able to solve the instance496

in 0.2 seconds.497

5.3.3 Larger online instances498

Figure 14 shows the amount of hospitals required to fulfill the schedules. The difference in499

the number of hospitals required per instance between the two algorithms seems to have no500

correlation with the size of the input. Algorithm 2 seems to again consistently require fewer501

hospitals to schedule an instance. Differences in computation times are negligible on the502

instances smaller than 5000 patients, all finish their computations in under 3 seconds, as can503

be seen in 15. On the 5000 patients instance algorithm 2 takes more than 120 seconds and is504

timed out. A possible reason for time out might be that due to the relatively large amount of505

patients and hospitals required, a lot of intervals across different hospitals will intersect with506

a patient’s available times lots for the first dose. The algorithm calculates the maximum507

interval for the second dose, as explained in section 5.3.1 which in turn adds more potential508
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Instance ILP ALG 1 ALG 2
#M #M T(s) #M T(s)

3-1 2 2 0.0065 2 0.0060
4-3 TIME TIME >120 TIME >120
4-4 2 3 0.0057 2 0.0060
5-3 3 4 0.0058 3 0.0060
5-5 TIME 2 0.2040 TIME >120
6-1 2 4 0.0060 2 0.0061
7-2 1 3 0.0067 3 0.0064
10-1 3 5 0.0063 4 0.0065
45 5 11 0.7440 10 10.3232

Table 1 Hospital allocation comparison, on a select number of instances

Figure 14 Hospitals scheduled per in-
stance. Figure 15 Computation time per instance.

intervals to be considered. Iterating through all these intervals to simultaneously find the509

optimal placement of two doses may then explain the increased processing times. On the510

10000 patients instance algorithm 2 appears to have a faster running time than algorithm 1,511

which is contrary to previously observed behaviour. Due to the very small availability length512

for the second dose the additional computation time of finding an optimum for the first dose513

and largest range of the second dose may be smaller than the overhead the two individual514

interval collections and dose plannings that happen in algorithm 1.515

5.3.4 Remarks on implementation516

The two implementations of the online algorithm demonstrated show promising results,517

they manage to produce feasible schedules within reasonable time. Especially algorithm 1518

performs very well if scheduling on an optimal amount of machines is not a priority. However,519

both algorithms suffer from several inefficiencies. The biggest inefficiency is the use of520

iteration to search for the optimal time slot in an interval. If these intervals become large521

this has a significant impact on performance, especially for algorithm 2. Instead a specialised522

function (e.g. a modified binary search) could reduce the amount of instructions ’wasted’ on523
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traversing each interval. Another limitation of the current implementation is that schedules524

currently feature a machine horizon beyond which no jobs can be scheduled. Due to this525

implementation it may not possible to schedule certain instances. Although it is technically526

possible to start using an infinite machine horizon this will require a substantial rewriting of527

the algorithms in the form of edge cases that need to be dealt with. Real world scenarios528

in which a scheduling program would benefit from an infinite machine horizon would be529

limited. Many publications on machine scheduling choose to work with a planning horizon,530

beyond which no schedule is planned. Therefore we argue that accounting for the possibility531

of infinitely long schedules is of little interest to us academically.532

6 Conclusions533

In this project we investigated the vaccine scheduling problem in the offline and online534

settings. With the research we conducted we have been able to provide exact solutions for535

small offline instances through integer linear programming and created a heuristic algorithm536

to provide solutions for online instances. For future research, we aim at improving the offline537

algorithm in order to be able to deal with larger instances as well as providing an upper538

bound for the competitive ratio of our proposed online algorithm. With respect to the539

offline algorithm, we encountered several difficulties when dealing with more than 50 patients.540

With respect to the online algorithm, we were able to provide a lower bound of lg(n) to the541

competitive ratio. Subjects for future work could include improving the running times of the542

online algorithms as discussed in section 5.3.4.543
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7 Appendix556

Listing 1 Online Algorithm 1
557

plan_patient (S, r1 , d1 , x, ell)558

fs := get_free_schedule (S, (r1 , d1 ));559

t1 := plan_dose (fs);560

S := remove_planned_timeslot (S, t1 , p1);561

fs := get_free_schedule (S, (t1+p1+x, t1+p1+x+ell ));562

t2 := plan_dose (fs);563

S := remove_planned_timeslot (S, t2 , p2);564

return S, t1 , t2;565

566

plan_dose (fs)567

best_i := -1;568

best_flexibility := -1;569

foreach interval in fs do570

begin571

lower , upper := interval ;572

for i:= lower to upper do573

begin574

flexibility :=f(lower , i) + f(i+p1 , upper );575

if( flexibility > best_flexibility ):576

best_flexibility := flexibility ;577

best_i :=i;578

else:579

continue ;580

end;581

end;582

return best_i ;583584
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Listing 2 Online Algorithm 2
plan_patient (S, r1 , d1 , x, ell)

fs := get_free_schedule (S, (r1 , d1), x, ell );
t1 := plan_dose (fs , x, ell );
S := remove_planned_timeslots (S, p1);
return S, t1 , t2;

plan_dose (fs)
best_i := -1;
best_j :=-1
best_flexibility := -1;
foreach interval in fs do
begin

lower , upper := interval ;
for i:= lower to upper do
begin

foreach interval in fs do
lower2 , upper2 := interval
begin

for j:= lower2 to upper2 do
begin

flexibility :=f(lower , i) + f(i+p1 , upper)
+ f(lower2 , j) + f(j+p2 , upper2 );

if( flexibility > best_flexibility ):
best_flexibility := flexibility ;
best_i :=i;
best_j :=j;

else:
continue ;

end;
end;

end;
end;
return best_i , best_j ;
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