
Utrecht University

Concepts of Programming Language Design 2021-2022
INFOMCPD

Language Report

Apache Groovy Programming Language

Author:
Athanasios Tsiamis
Student Nr. 5223652
February 22, 2022

a course supervised by:
Prof. Dr. Gabriele Keller &

Tom Smelding

Figure 1: Apache Groovy’s logo

Introduction

Apache Groovy is a Java-syntax-compatible object-oriented programming language for the Java
platform. Groovy includes features found in Python, Ruby and Smalltalk, but uses syntax similar
to the Java programming language making it the ideal choice for many Java programmers. It
contains powerful features such as closures, functional programming and type inference and it is
supported by the Apache Software Foundation & the Groovy community [1].

A brief history

Although in 2003 Java dominated the market with 24% according to the TIOBE index [2], Java
wasn’t the desired language for various scenarios such as scripting, applying an urgent patch or
just programming without boilerplate code. A new language was needed which should maintain a
Java-like structure while also reducing the complex and often unnecessary syntax imposed by Java.

James Strachan can be considered the creator and original envisionist of Groovy. He first wrote
about the development on his blog in August of 2003. He quoted “I’ve wanted to use a cool
dynamically typed scripting language specifically for the Java platform for a little while.[..]I’d rather
a dynamic language that builds right on top of all the groovy Java code out there & the JVM.”[3]

Hence the development of this language started and in March 2004 it was formally submitted
to the Java Community Process as a Java Specification Request (JSR) Nr.241 where it was unan-
imously accepted by ballot [4]. However, this approval was the beginning of a difficult process
for the Groovy community. For many, development took a turn towards the wrong direction and
imposed a bigger workload than they were willing to do. James Strachan silently stepped down
from his managerial position and Guillaume Laforge took his position [5]. Finally on January of
2007 Groovy 1.0 was released [6] [7].

In July 2012 Groovy 2.0 was released in which groovy code could be compiled statically offering
type inference and performance near that of Java [8].

As of today, Groovy 3.0.9 is the latest stable release which includes a brand new parser (code-
named Parrot) and adds, among other things, as many as 80 extension methods to existing Java
classes. Meanwhile Groovy 4.0, which is still in beta, adds powerful switch expressions and sealed
types which restrict other classes or interfaces interacting with them.

Groovy is gaining more ground on various applications not only as a complementary language
to a Java project but also as a standalone language in a project of its own(see section 4).

1

1 Main features

1.1 Groovy 2.0 - Static features in a dynamic language

As mentioned before, Groovy was created to be the dynamic supplementary of Java. Developers
fluent in Java could switch back and forth between the two languages seamlessly and use the
appropriate type system when needed. However, as time progressed, Groovy developers fancied
Groovy’s syntax more and more and preferred to use only one language (instead of two). The issue
though was that they wanted to have a safety net for errors which only the static type check could
provide.

Groovy’s development team was struggling with this change and was hesitant to offer static
type checking. Feedback was mixed with some supporting that a shift towards static typing would
cause Groovy to be a “failed Java 8 wannabe” [9] while others strongly supported type checking
even if that meant that Groovy would lose some of its dynamic features [10].

While this topic was still controversial, it was clear that the other languages were progressing
while Groovy was still lacking behind; Kotlin (a static type Java like language) had been just
unveiled by the JetBrains team while Java was preparing the next release [11][12]. Immediate
action was needed if Groovy would to be kept as an alive programming language.

Using the right concept was no easy task for the Groovy development team. According to King
(Groovy’s chair PMC) various ideas were considered for combining static and dynamic typing [5].
One proposal would be gradual typing based on the work of Siek and Taha [13]. The idea behind
that would be that variables declared with a type would be statically checked while others would
remain dynamic. According to King, while this idea was favourable to them [5], it would break
existing codebase. Hence, the concept of gradual typing was rejected.

Another option, as King suggested, would be a special switch that would set the compiler into
static mode in which all code would be statically typed [5]. However, this option felt too crude as
many existing codebases were already making use of its dynamic features in some parts and not use
it at all in others. Enforcing this binary project-wide switch did not bide well with the developers.
Therefore, the compiler switches were rejected as well.

The solution came eventually from a Java style annotation1. A flexible alternative to the
compiler being in one of two modes was to indicate at the method level whether code within that
method was static or dynamic. A class could then be annotated (if needed) as a shorthand for
annotating all methods. For example a static class could have one or more dynamic methods and a
dynamic class one or more static methods. Thus two new annotations were created: @TypeChecked
[15] which methods binded with this would go through the Meta Object Protocol (MOP) and
@CompileStatic in which all of the MOP would be bypassed [16]. More about metaprogramming
can be found in section 3.

1.2 The Groovy way - Syntax style and new features

Groovy adds various features to the Java Virtual Machine ecosystem. Groovy’s vibrant and rich
open source community has been a factory of new ideas. The following section provides a short
overview of some important new features of the language.2

1Java annotations, a form of metadata, consist of an at-sign (@) and provide data about a program that is not
part of the program itself [14].

2The list is not complete as it only contains a number of features the author found interesting. The full list of
features can be found at https://groovy-lang.org/style-guide.html

2

https://www.jetbrains.com/
https://groovy-lang.org/style-guide.html

1.2.1 Semicolons and return keywords are optional

Even though Groovy uses the JVM and Java code can be used directly into a groovy program,
semicolons are optional. The same principle applies for the return keyword as well. However, for
short methods and for closures, it’s nicer to omit it for brevity. The code in section 1.2.5 provides
a simple example of this.

1.2.2 Optional Typing - Def keyword

One of the most important keyword in the Groovy programming language is the def keyword.
The def keyword is used to define an untyped variable or a function in Groovy, as it is an optionally-
typed language. It can make the life of a developer easier and drive up the productivity by reducing
the need to specifically think about the variable needed. Instead they can just declare it as “def”
and let the compiler infer its type. (See line 1 at section 1.2.5)

1.2.3 Groovy Strings (GStrings)

One of the most cumbersome tasks in Java can be string manipulation in which users have
to either use external libraries or complex notation with the help of “+” sign. Groovy reduces
this need by introducing Groovy Strings (GStrings). Gstrings represent a String which contains
embedded values such as:

1 "hello there ${user} how are you?"

which can be evaluated lazily.
Advanced users can iterate over the text and values to perform special processing, such as for

executing SQL operations, where the values can be substituted for ? and the actual value objects
can be bound to a JDBC statement3[18]. For example:

1 def firstName = "Thanos"

2 def lastName = "Tsiamis"

3 sql.execute("INSERT INTO contactBook (firstName , lastName)"+"values (?,?)", [

firstName , lastName])

A more simple example of the case of GStrings can be found at section 1.2.5

1.2.4 Switch statement

Groovy’s switch statement accepts almost all types simultaneously making it a very powerful
statement in comparison to other languages (such as C) which only accept primitive types.

1.2.5 Example

1 def version = "1.2"

2 switch(GIT_BRANCH) {

3 case "develop": \\case is of type String

4 result = "dev"

5 break

3According to IBM documentation: “Java™ database connectivity (JDBC) is the JavaSoft specification of a
standard application programming interface (API) that allows Java programs to access database management sys-
tems.”[17]

3

6 case ["master", "support/${version}".toString ()]: \\case is of type

Arraylist

7 result = "list"

8 break

9 case "support/${version}": \\case is of type GString

10 result = "sup"

11 break

12 default:

13 result = "def"

14 break

15 }

16 print("${result}")

2 Drawbacks of Groovy

Even though this report greatly praises Groovy, it is by no means a perfect language.
Optional typing (i.e. def keyword), even though sometimes can be a handy feature especially when
scripting, it can make the program unnecessary difficult to understand. Strong typing makes the
contract more concrete, especially in public APIs, avoids possible passed arguments type mistakes
and also helps the IDE with code completion.

Additionally, progress in the Java language tends to obliterate the strong points made by Groovy.
Var keyword which was introduced in Java 10 [19] started to look like the def keyword (optional
typing) of Groovy and pattern matching for the switch keyword introduced in Java 17 [20], although
still more cumbersome than Groovy, may under certain circumstances reduce the need for a new
language.

3 Runtime & compile-time metaprogramming
An in depth analysis

Groovy like various others programming languages can support metaprogramming. Groovy has
two modes of metaprogramming; runtime and compile-time metaprogramming.

3.1 Runtime metaprogramming

With runtime metaprogramming it is possible to intercept, inject or even interact with other
methods at runtime. This concept (also known as monkey patch) modifies run time code but does
not alter the original source code. Metaclasses play a key role on this process as the compiler and
the Groovy Runtime Engine interact with methods of a Metaclass class.

3.1.1 Expando Metaclass

Expando is a special case of Metaclass that allows for dynamically adding or modifying prop-
erties, constructors or even borrowing methods from other classes by using closure syntax. It is
particularly useful for software testing and in particular simulating the behavior of a program (i.e.
stubbing & mocking).

However, with great power comes great responsibility. Using the expando metaclass means that
in the same JVM all objects of that class will have that method added to Metaclass which could

4

maybe lead to problems. Thus, it is advised to use Categories, a feature borrowed from Objective-C
which addresses the issue of additional methods by limiting them in a block of code (closure). An
example of expando metaclass can be found in appendix section A.1.

3.2 Compile-time metaprogramming

In contrast to runtime metaprogramming, compile-time metaprogramming allows the code to
be generated at compile time. Those transformations are altering the Abstract Syntax Tree (AST)
of a program, which is why in Groovy are called AST transformations.

AST transformations are very important especially when dealing with a mix of Groovy and Java
code. For example an AST transformation can add methods to a class and be visible to Java; a
thing which wouldn’t be visible if runtime metaprogramming was used.

Groovy comes prepacked with various AST transformations to reduce boilerplate code
(e.g.@TupleConstructor), improve coding efficiency (e.g.@BaseScript) and other. Every developer
can also make their own project wide or method specific AST transformation.

AST transformations are of two categories; global and local. Global are applied globally on the
code wherever the transformation can apply(field, method, class etc.). Local transformations are
applied locally by using the annotation notation. The compiler will discover them and apply the
transformation on these code elements. Every developer can write their own AST (global or local)
transformations. For the simplicity of this report in section A.2 a simple prepackaged example of
@Lazy annotation can be found which delays field instantiation until the time when that field is
first used.

4 Groovy applications

Having set some basic Groovy rules and syntax it’s time to see where this language is being used.
The following section covers a large part of a system’s development lifecycle (Development, Testing
[see section 4.1] & Integration[see sections 4.2 - 4.3]) in which Groovy is the primary language.
Section A contains three example applications; more specifically section A.3 contains a simple
Groovy program, which in turn is then built into bytecode by a Gradle program (which uses groovy
scripting) (section A.4) and then deployed in a (hypothetical) pipeline in section A.5 which uses
Groovy as well.

4.1 Testing

Groovy has been widely used for writing test scripts in Spock and Geb. Groovy’s easy to learn
syntax and Spock’s highly expressive language makes them a top choice in the testing industry for
Software and Quality Assurance Engineers alike. As seen in section A.3 the absence of boilerplate
code and its ”narrative” nature are one of the reasons Groovy is preferred for this job.

4.2 Gradle

Gradle is an open-source build automation tool that is designed to be flexible enough to build
almost any type of software. It is high performance, fully extensible and fully supported by nu-
merous major IDEs such as IntelliJ IDEA, Android Studio and Eclipse. Gradle is heavily based

5

https://gradle.org/

upon Groovy in its core implementation and testing.4 It can be also used to either script, build the
application or just chain tasks with the keywords shouldRunAfter and dependsOn.

4.3 Jenkins

Jenkins is a self-contained, open source automation server which can be used to automate all
sorts of tasks related to building, testing, and delivering or deploying software.

Groovy scripts are written in gdsl type files which are executed by the pipeline in a remote
server such as an AWS environment. Jenkins makes also heavy use of Gradle (see section 4.2) to
combine the whole pipeline into one seamless process.

5 Conclusion

Groovy was created as a Java supplementary and as time progressed it is considered a great
Java alternative. It vastly improves various features found in many object oriented languages while
it adds many more due to its vibrant community of developers. Meanwhile, its applications in
various parts of the product’s development cycle make it the ideal choice for many.

A Coding Examples

A.1 Runtime metaprogramming Example

The following example is taken from ”Groovy in Action” Konig et al [21].

1 class Spy {

2 static {

3 def mc = new ExpandoMetaClass(Spy , false , true)

4 mc.initialize ()

5 Spy.metaClass = mc

6 }

7 String name = "James"

8

9 void methodMissing(String name , args) {

10 if (name.startsWith(’changeNameTo ’)) {

11 println "Adding method $name"
12 String newName = name.substring (12)

13 def newMethod = { delegate.name = newName }

14 Spy.metaClass."$name" = newMethod

15 newMethod ()

16 } else {

17 throw new MissingMethodException(name , this.class , args)

18 }

19 }

20 static void main(String [] args) {

21 def spy = new Spy()

22 assert "James" == spy.name

23 spy.changeNameToAustin ()

24 assert "Austin" == spy.name

25 spy.changeNameToMaxwell ()

26 assert "Maxwell" == spy.name

4More information about the source code can be found at Gradle’s repository hosted at Github gradle/gradle

6

https://www.jenkins.io/
https://github.com/gradle/gradle

27 spy.changeNameToAustin ()

28 }

29 }

The output of this program if we use main as an entry point is:

1 Adding method changeNameToAustin

2 Adding method changeNameToMaxwell

Notice that even though there are two calls spy.changeNameToAustin() there is only one print to
the console as the second one was already registered as a method and therefore methodMissing was
not used.

A.2 Compile time metaprogramming Example

The following example is taken from ”Groovy in Action” Konig et al [21] as well. It shows how
an expensive resource (e.g. database) can be lazily evaluated (i.e.@Lazy) to save costs.

1 class Resource {

2 private static alive = 0

3 private static used = 0

4 Resource () { alive ++ }

5 def use() { used++ }

6 static stats () { "$alive alive , $used used" }

7 }

8 class ResourceMain {

9 def res1 = new Resource ()

10 @Lazy res2 = new Resource ()

11 @Lazy static res3 = { new Resource () }()

12 @Lazy(soft=true) volatile Resource res4

13 }

14 new ResourceMain ().with {

15 assert Resource.stats () == ’1 alive , 0 used’

16 res2.use()

17 res3.use()

18 res4.use()

19 assert Resource.stats () == ’4 alive , 3 used’

20 assert res4 instanceof Resource

21 }

A.3 Groovy test file

1 import spock.lang.Specification

2 class UserJourneySpec extends Specification {

3 ArrayList shoppingCart = []

4

5 def setup() { \\setup runs automatically before every test

6 println("Setting up test data ...")

7 assert shoppingCart.empty \\the assert keyword could be omitted

8 }

9

10 def cleanup () { \\ cleanup runs automatically after every test

11 print("Deleting everything from the basket")

12 shoppingCart.clear ()

13 }

14

7

15 def "Users buys groceries from the website"() {

16 when: "User logs in the website"

17 userLogsIn () \\ an external method that logs in the user into the website

18

19 and: "Adds some products to the basket"

20 shoppingCart += "banana"

21 shoppingCart += "apple"

22 shoppingCart += "orange"

23

24 then: "Cart is not empty"

25 shoppingCart.size() == 3

26

27 when: "User decides to remove the apple from his cart"

28 shoppingCart -= "apple"

29

30 then: "Cart does not contain apple but still has the other fruits"

31 !shoppingCart.contains("apple")

32 shoppingCart.size() == 2

33 }

34 }

A.4 Gradle file

1 [...] \\ gradle specific commands are omitted for brevity

2

3 tasks.register(’testSuiteSizeValidation ’) {

4 doLast {

5 print("Validating that no extra test classes were added by a developer")

6 def path = "..\\ GroovyTesting \\src\\test\\ groovy \\"

7 def list = []

8 def dir = new File(new File(path).getAbsolutePath ())

9 dir.eachFileRecurse { file ->

10 list << file

11 }

12 assert list.size() == 1

13 }

14 }

A.5 Jenkinsfile

1 pipeline {

2

3 agent any

4

5 triggers {

6 cron(’H */8 * * *’) // regular builds

7 pollSCM(’* * * * *’) // polling for changes , here once a minute

8 }

9

10 stages {

11 stage(’Checkout ’) {

12 steps { // Checking out the repo

13 checkout changelog: true , poll: true , scm: [$class: ’GitSCM ’,

branches: [[name: ’*/ master ’]], browser: [$class: ’BitbucketWeb ’, repoUrl: ’

https ://web.com/blah’], doGenerateSubmoduleConfigurations: false , extensions:

8

[], submoduleCfg: [], userRemoteConfigs: [[credentialsId: ’git’, url: ’ssh://

git@git.giturl.com/test/test.git’]]]

14 }

15 }

16 stage("Validating that the number of tests is correct") {

17 steps {

18 script {

19 try {

20 print("Gradle task starting now ...")

21 sh "./ gradlew -q testSuiteSizeValidation"

22 } finally {

23 print("Task finished!")

24 }

25 }

26 }

27 }

28

29 stage("Building the application") {

30 steps {

31 script {

32 try {

33 print("Gradle task starting now ...")

34 sh ’./ gradlew -q build ’ //run a gradle task

35 } finally {

36 print("Task finished!")

37 }

38 }

39 }

40 }

41 }

42 stage("Notify in Slack") {

43 buildStatus = result

44 def subject = "${buildStatus }: Job ’${env.JOB_NAME} [${env.BUILD_NUMBER }]’"
45 def summary = "${subject} (${env.BUILD_URL })"
46 if (result == "FAIL") {

47 color = "RED"

48 colorCode = "#FF0000"

49 slackSend (color: colorCode , message: summary)

50 error("Job has failed")

51 }else{

52 color = "GREEN"

53 colorCode = "#00 FF00"

54 slackSend (color: colorCode , message: summary)

55 }

56 }

57 }

References

[1] The Apache Groovy programming language. url: https://groovy-lang.org/.

[2] TIOBE index. url: https://www.tiobe.com/tiobe-index/.

[3] James Strachan. Groovy - the birth of a new dynamic language for the Java platform. 2003.
url: https://web.archive.org/web/20030901064404/http://radio.weblogs.com/
0112098/2003/08/29.htm.

9

https://groovy-lang.org/
https://www.tiobe.com/tiobe-index/
https://web.archive.org/web/20030901064404/http://radio.weblogs.com/0112098/2003/08/29.htm
https://web.archive.org/web/20030901064404/http://radio.weblogs.com/0112098/2003/08/29.htm

[4] JSR 241: The Groovy Programming Language. url: https://jcp.org/en/jsr/detail?id=
241.

[5] Paul King. “A History of the Groovy Programming Language”. In: Proc. ACM Program. Lang.
4.HOPL (June 2020). doi: 10.1145/3386326. url: https://doi.org/10.1145/3386326.

[6] Guillaume Laforge.Groovy 1.0 is there! url: https://markmail.org/message/qspd5ufq35v7yk3a.

[7] Jeremy Rayner. Groovy 1.0 released! url: http://javanicus.com/blog2/items/204-
index.html.

[8] Oliver Plohmann. Groovy 2.0 Performance compared to Java. url: http://objectscape.
blogspot.com/2012/08/groovy-20-performance-compared-to-java.html.

[9] Russel Winder. static compilation for Groovy. url: https : / / markmail . org / message /
g627wfm5au3emher.

[10] Endre Stølsvik. Consider statically typed/compiled as default for Groovy 3.0. url: https:
//issues.apache.org/jira/browse/GROOVY-8329.

[11] Paul Krill. JetBrains readies JVM-based language. url: https://web.archive.org/web/
20190907161741/https://www.infoworld.com/article/2622405/jetbrains-readies-

jvm-based-language.html.

[12] JSR 336: JavaTM SE 7 Release Contents. url: https://jcp.org/en/jsr/detail?id=336.

[13] Jeremy Siek and Walid Taha. “Gradual Typing for Objects”. In: Aug. 2007, pp. 2–27. isbn:
978-3-540-73588-5. doi: 10.1007/978-3-540-73589-2_2.

[14] The Java™ Tutorials Lesson: Annotations. url: https : / / docs . oracle . com / javase /

tutorial/java/annotations/.

[15] GEP-8. url: https://groovy.apache.org/wiki/GEP-8.html.

[16] GEP 10. url: https://groovy.apache.org/wiki/GEP-10.html.

[17] What is JDBC? url: https://www.ibm.com/docs/en/informix-servers/12.10?topic=
started-what-is-jdbc.

[18] James Strachan. Class GString. url: https://docs.groovy-lang.org/latest/html/api/
groovy/lang/GString.html.

[19] JDK 10 Release Notes. url: https://www.oracle.com/java/technologies/javase/10-
relnote-issues.html.

[20] JDK 17 Release Notes. url: https://openjdk.java.net/projects/jdk/17/.

[21] Dierk Konig et al.Groovy in Action. 2nd ed. Manning, 2015. isbn: 9781935182443; 1935182447.

10

https://jcp.org/en/jsr/detail?id=241
https://jcp.org/en/jsr/detail?id=241
https://doi.org/10.1145/3386326
https://doi.org/10.1145/3386326
https://markmail.org/message/qspd5ufq35v7yk3a
http://javanicus.com/blog2/items/204-index.html
http://javanicus.com/blog2/items/204-index.html
http://objectscape.blogspot.com/2012/08/groovy-20-performance-compared-to-java.html
http://objectscape.blogspot.com/2012/08/groovy-20-performance-compared-to-java.html
https://markmail.org/message/g627wfm5au3emher
https://markmail.org/message/g627wfm5au3emher
https://issues.apache.org/jira/browse/GROOVY-8329
https://issues.apache.org/jira/browse/GROOVY-8329
https://web.archive.org/web/20190907161741/https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
https://web.archive.org/web/20190907161741/https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
https://web.archive.org/web/20190907161741/https://www.infoworld.com/article/2622405/jetbrains-readies-jvm-based-language.html
https://jcp.org/en/jsr/detail?id=336
https://doi.org/10.1007/978-3-540-73589-2_2
https://docs.oracle.com/javase/tutorial/java/annotations/
https://docs.oracle.com/javase/tutorial/java/annotations/
https://groovy.apache.org/wiki/GEP-8.html
https://groovy.apache.org/wiki/GEP-10.html
https://www.ibm.com/docs/en/informix-servers/12.10?topic=started-what-is-jdbc
https://www.ibm.com/docs/en/informix-servers/12.10?topic=started-what-is-jdbc
https://docs.groovy-lang.org/latest/html/api/groovy/lang/GString.html
https://docs.groovy-lang.org/latest/html/api/groovy/lang/GString.html
https://www.oracle.com/java/technologies/javase/10-relnote-issues.html
https://www.oracle.com/java/technologies/javase/10-relnote-issues.html
https://openjdk.java.net/projects/jdk/17/

	Main features
	Groovy 2.0 - Static features in a dynamic language
	The Groovy way - Syntax style and new features
	Semicolons and return keywords are optional
	Optional Typing - Def keyword
	Groovy Strings (GStrings)
	Switch statement
	Example

	Drawbacks of Groovy
	Runtime & compile-time metaprogramming An in depth analysis
	Runtime metaprogramming
	Expando Metaclass

	Compile-time metaprogramming

	Groovy applications
	Testing
	Gradle
	Jenkins

	Conclusion
	Coding Examples
	Runtime metaprogramming Example
	Compile time metaprogramming Example
	Groovy test file
	Gradle file
	Jenkinsfile

