
Big Data from Utrecht University

Big Data Essay

Athanasios Tsiamis SN:5223652

March 2022

1 Introduction

In the digital era we are living in, the amount of
data people are using is increasing exponentially. Ac-
cording to Statista Research Department [1] the to-
tal amount of data created and replicated in 2020
reached a new high of just over 64 zettabytes. To
put this into perspective, from the beginning of the
human race to the year 2003, it is estimated [9] that
5 exabytes of data are created which is only 0.5% of
a zettabyte! Data varies not only in size but also
in forms and speed. These forms may include var-
ious means such as photos, videos or even random
pieces of byte strings. Meanwhile, as the Internet of
Things (IoT) is gaining a lot more traction, more and
more objects and devices are connected to the inter-
net, gathering data on customer usage patterns and
product performance. However, as vast all of this data
is, it provides no real value in its raw form. Even with
cutting edge cloud computer farms, we are still un-
able to process these huge, unrefined amounts of data
without some sort of preprocessing or analysis first.

Problem statement. Given this fairly large set of
data, can it be analyzed in such a way that accurate
results can be extracted from either the whole data
set or an as good as possible sample? And if we take
a sample, does the sample size matter?

2 Frequent item set mining

Before we delve deeper into addressing the problems
posed before, it would be wise to set some preliminar-
ies for easier understanding of the topics that follow.
This will be done with the help of an example. Con-
sider an online movie streaming platform that has var-
ious movies from different genres. The platform , as
one might expect, wants to learn more about which
movies are watched consecutively so it can provide
better recommendations to its customers.
Given a set of items (i.e. an itemset) I=i1, ..., in,

and in our case movies, a transaction t is a subset
of I and a database D is a set of those transactions.
In our example, a transaction t would be a sequence
of movies a viewer watched (e.g. “Godfather I” then
“Godfather II” and then the “Goodfellas”) while a
database D would contain various of these transac-
tions alongside a unique id to make them apart.

Although the streaming platform surely does con-
tain a lot of different kinds of movies, it would make
sense if a viewer has some preference to a certain
genre. For example, there is one customer that likes
superhero films and is clearly not into autobiogra-
phy movies. In this case even though “Batman” and
“Bohemian Rhapsody” may be the two most watched
films in the platform it wouldn’t make sense to rec-
ommend the latter film to this person, as there are
not a lot people who actually follow through with
that choice. Therefore, a framework is needed that
can somehow mine the patterns that occur more fre-
quently than a desired threshold. This occurrence in
the database will be denoted from now on as support.

Formally, this type of problem is known as Fre-
quent Itemset Mining (FI Mining); Given a trans-
action database D over a set of items I, find all item-
sets that are frequent in D given the minimal support
threshold θ.
A first attempt at tackling this problem would be to

simply check if every possible combination of itemsets
is frequent or not. However, this brute force method is
simply not feasible. For example, if we can check 1024
sets/sec then even for a very small streaming platform
with just 100 movies we need more than 4×1018 years
which exceeds the age of the universe!

Fortunately, this obstacle can be surpassed with the
Apriori Algorithm that makes use of the Apriori prop-
erty. Formally, the Apriori property is defined as:

I1 ⊆ I2 ⇒ supp(I1) ≥ supp(I2)

Intuitively, reverting back to the movie platform
example, let’s consider the Rocky franchise which (as
of today) consists of nine movies (denoted by Ri, i =
1, ..., 9). Obviously, watching Rocky I and then Rocky
V is a subset of binge watching the entire collection of
Rocky Movies (R1R5 ⊂ R1..R5..R9). However, we ex-
pect that the amount of people who have watched just
those two films (in that particular order) to be at least
as many as those films connoisseurs that have watched
the entire series (supp(R1R5) ≥ supp(R1R2...R9)).
What is more, is that if Y ⊂ X and supp(X) < t1 then
supp(Y) < t1. This means that a set X is a candidate
frequent set, if and only if, all its subsets are frequent.
In that way, the Apriori Algorithm can search from
smaller to bigger subsets for frequent itemsets (i.e.
levelwise) and it can stop early if a subset is found
not to be frequent.

Big Data 2022

However, even with the Apriori algorithm being
faster than the brute force method, in order to check
how frequent an itemset set is, we would have to scan
the whole database to find out. In our online plat-
form example that could potentially mean checking
millions of rows of data just to see if a particular
movie is frequent or not. Unsurprisingly, this kind
of process is time and space consuming and there-
fore, largely impractical. Instead, mining for frequent
itemsets from a sample is far more efficient. However,
since we are using a sample, we may end up eventually
finding itemsets that are frequent in the sample but
not in the whole database and vice versa. Evidently,
the probability of such errors relies on the sample size.
More about this sample size will be discussed in sec-
tion 4.1 and 4.2.

So, let p be the probability that a random trans-
action among all the transactions in the database
supports itemset Z. For example, if Z was in our
movie example R1R3 then let p be the probability
that a random subscriber among the movies he/she
saw was Rocky I and then (possibly after many
movies) Rocky III. What we’re essentially doing
is that we ’re using Z as an indicator function;
mathematically speaking1:

Z(t)=

{
1 , Z ⊆ t

0 , otherwise

Therefore, given a transaction database D and an
itemset Z we have managed to create a function
Z: D −→ {0,1} or, in other words, a classifier to
dictate whether Z is supported or not.

This function indicates a shift to our original prob-
lem; from finding the ideal sample size for efficient
frequent sample itemset mining to finding the ideal
sample size for a classification problem. The latter
process is called PAC-Learning and will be further
discussed in section 3.

Finally, the notion of classifying a setX with the set
of a classifiers H can be formalised as a range space.
A range space (X, R) consists of a finite or infinite set
of points X and a finite or infinite family R of subsets
of X which is called ranges.

3 PAC-learning

Probably Approximately Correct (PAC) learning con-
stitutes one of the cornerstones in the Machine Learn-
ing Field. In the following section a more thorough
explanation of this framework will be given which was
originally proposed by Vapnik & Chervonenkis ([10])
and Leslie Valiant ([8]).

In short, in this framework, the learning unit re-
ceives examples(e.g. data points) and must select a

1For brevity the 1Z was omitted and Z was used instead.

generalization function (called hypothesis) that accu-
rately classifies them from a greater set of possible
functions(i.e. a function family). The goal is that with
high probability (the “Probably” part) the function
picked by the framework will be able to accurately
predict outcome values for the data (the “Approxi-
mately Correct” part).

In the final section the No-Free-Lunch Theorem is
presented, which addresses the question of finding the
best machine learning algorithm out there to solve any
kind of problem.

3.1 Classification, Quality and convergence

Given a data setX of particular interest, we can safely
assume that there is a distribution D that governs X.
Ideally, we would like to somehow learn this distribu-
tion. However, as this may not be practical in a real
world application, due to the sheer amount of data,
we may have to resort to other methods. Therefore, a
more feasible alternative would be to “learn” a (com-
putable) function h : X −→ Y (called hypothesis) such
that it classifies data points from X with labels of
set Y . Such process, computing wise, would be far
more efficient than finding the underlying distribu-
tion. However, this newly introduced definition on
hypothesis function is too “liberal” and may as well
be very much off of the true function f that classifies
the data accurately. As a result, there is an obvious
need to “judge” how well h performs.

A first (and hasty) attempt at this would be to
compare the classification results of h to the results
of the true function f that governs the data with the
help of probability theory. Thus, the loss of using h
rather than f can be formally defined as the probabil-
ity Px∼D[h(x) ̸= f(x)] or, informally, the probability
that h makes a mistake while classifying. As said be-
fore, this kind of validation on h is considered too
crude, as it depends on both the underlying distribu-
tion and the ideal true function f , that categorizes
perfectly the data, both of which are obviously not
known.

A more fine-grained attempt at evaluating the hy-
pothesis function is measuring how well it performs
on a given database sample D.

It’s important here to notice that in the sampling
process all the xi ∈ D have been sampled indepen-
dently and identically distributed (IID) according to
D. This means that each random variable (in our case
entries in the database) has the same probability dis-
tribution as the others and the occurrence of one does
not affect the occurrence of others (i.e. mutually in-
dependent). For brevity, we state the IID assumption
for a data set with m elements as : D ∼ Dm in which
Dm is the distribution over the m-tuples induced by
D.

So, the empirical error LD(h) based on a sample D

Big Data from Utrecht University

is defined as:

LD(h) =
|{(xi, yi) ∈ D | h(xi) ̸= yi}|

|D|
(1)

The second approach, while it most certainly solves
the problems mentioned before, it heavily depends on
a good sample D. To elaborate further on this, let’s
define a hypothesis class H as a set of hypotheses.
While it surely is possible to include infinitely many
hypotheses in the class H it would be wise to restrict
to a finite hypothesis class and look for the hypothesis
h that has minimal loss over it. Mathematically
speaking, we choose hD such that hD ∈ argmin

h∈H
.

This is known as Empirical Risk Minimization
(ERM). A simple way to implement ERM would be,
for example, to use a halving algorithm. Such an algo-
rithm, using a given sample D, iteratively drops hy-
potheses which make mistakes while classifying, until
it finds the one with minimal loss.

However, as said above, the formula (1) is depen-
dent on the sample D and the choice of a good hD.
Therefore, the loss can be considered a random vari-
able and the problem derived by formula (1) can be
now thought of as: the probability to pick a data
set out of the database, for which the loss is small
enough. By convention, the probability of getting
a non-representative sample (i.e. a sample with high
loss) is denoted by the letter δ and the confidence of
our prediction with 1− δ.

Naturally, a misleading, non-representative sample
may impact negatively our results. Since the term
“misleading sample” can be somewhat abstract in its
current form, it is properly formalised with the help
of the accuracy parameter ϵ. Therefore, a sample D
is “good” if the loss of an hypothesis on that sam-
ple is ϵ-close to its true loss under the distribution D
(|LD(h)−LD(h)| ≤ ϵ) and it is “bad” if the opposite
inequality applies (|LD(h)− LD(h)| > ϵ).

To further elaborate how a misleading sample may
have adverse effects, let HB be the set of bad hypothe-
ses, HB ={h ∈ H | LD,f (h) > ϵ}. Additionally, let
M be the set of a misleading sample that teaches us
a bad hypothesis, M = {D | ∃ h ∈ HB : LD(h) = 0}.
Assume that there is a hypothesis h which makes
no mistakes while classifying on the sample, that is
LD(hD) = 0. So, LD,f (h) > ϵ would mean that the
hypothesis hD makes way too many mistakes while
trying to classify the general data set D or, equiva-
lently, the sample is misleading. Using mathematical
notation, this means that {D | LD,f (h) > ϵ} ⊂ M .

Rewriting M as a union of sets in HB and using
the union bound, the Hoeffding inequality and some
basic mathematical analysis, one can prove that:

Dm({D|LD,f (h) > ϵ}) ≤ |HB|e−ϵm ≤ |H|e−ϵm (2)

Setting the right side in (2) less or equal than δ and
with some basic algebra we can prove that:

m ≥ ln(|H|/δ)
ϵ

(3)

Thus, by choosing a sample m bigger than this frac-
tion described above, we can force the probability of
a bad sample to be small. Evidently, this quantity
which depends on H dictates the size of iid samples
needed. Since there are infinitely many function fam-
ilies H, it would be smart though, to look for the one
that uses the minimal amount of those samples. This
function, which is denoted by mH, is known as the
sample complexity.

What’s more, a data set D is called ϵ-representative
if the sample is “good” for every hypothesis in the hy-
pothesis class H (∀ h ∈ H : |LD(h)−LD(h)| ≤ ϵ). Ep-
silon representative samples are especially important
in the sense that they can establish PAC-Learning if
somehow the presence of them is always guaranteed.

Luckily, this guarantee is given by the uniform con-
vergence property! A hypothesis class H has the uni-
form convergence property (with respect to domain
Z) if there exists a sample complexity function mUC

H
such that ∀ (ϵ, δ) ∈ (0, 1)2 and for any distribution D
on Z, if D is an i.i.d. sample according to D over Z
of size m bigger than mUC

H , then D is ϵ-representative
with probability at least 1− δ.

3.2 Realizable vs agnostic PAC-learning

As mentioned before, PAC learning is an extremely
important notion which characterizes whether a hy-
pothesis class is learnable or not. PAC-learning comes
in two flavours; Realizable and Agnostic.

Realizable PAC-Learning makes use of the realiz-
ability assumption which states that the true hypoth-
esis is in H. In other words, there exists one hypoth-
esis h∗ that classifies perfectly the data and makes no
mistakes (LD,f (h

∗) = 0).

Therefore, using the definitions from before we can
now state the definition of realizable PAC Learning :
A hypothesis class H is Realizable PAC Learnable if
there exists a function mH : (0, 1)2 −→ N and a learn-
ing algorithm A such that ∀ ϵ, δ ∈ (0, 1) and for every
distribution D over X and for every f : X −→ {0, 1},
if the realizability assumption holds with respect to
H,D, f , then, when running A on m ≥ mH(ϵ, δ) i.i.d
samples generated by D and labelled by f , A returns
a hypothesis h ∈ H such that with probability at least
1− δ : LD,f (h) ≤ ϵ.

Big Data 2022

Informally, Realizable PAC Learning sets some
rules on the classification problems. Namely, if a sam-
ple is of sufficient size and one of the hypotheses clas-
sifies perfectly the data then reasonable results are
expected by the algorithm.

In section 3.1 we established the minimum sam-
ple size required so the probability of a bad sam-
ple is small. While trying to reach the desired out-
come, we essentially used the realizability assumption
(LD(hD) = 0) to come up to the final result described
in equation (3). Hence, now that we have the knowl-
edge of realizable PAC-Learning, we can see that ev-
ery finite hypothesis H is PAC learnable with sample
complexity:

mH(ϵ, δ) ≤ ⌈ ln(|H|/δ)
ϵ

⌉ (4)

However, assuming that we have found an assump-
tion that has zero loss is rather unrealistic. The real-
izabilty assumption , even though it greatly simplifies
the calculations , it leaves no space for outliers, exper-
imental errors or other noise that may impact nega-
tively results . Therefore, in the more general case, we
have but to drop this assumption and instead resort
to probability theory to accurately classify the data
points. This means reverting back to a probability
distribution D on X×Y i.e. D = D|X×D|Y |X . Then,
for a binary classification problem X×{0, 1} ∼ D, the
labelling classifier function is defined in a probabilistic
way:

fD=

{
1 , if P(y = 1|x) ≥ 1

2

0 , otherwise

Additionally, up until now, the main goal was the
minimization of the number of errors no matter their
kind. Even though this is a nice thing to achieve, it
shouldn’t be regarded as an end in itself. For exam-
ple, imagine a problem where a machine learning task
is classifying tumors as malignant or not. Needless
to say, finding a classification function that reduces
the number of both false negatives (i.e. a malignant
tumor is classified as benign) and false positives (vice
versa) would be ideal. However, classifying some tu-
mors as malignant when they are actually benign is
not that big of a deal as the patients can just repeat
the examination and find out.

Thus, in order to address the importance of error
types, let Z be stochastic variable with distributionD.
A loss function l makes use of this stochastic variable
l : Z × H −→ R+ so as to give “significance” to some
specific outcomes. The loss of hypothesis h ∈ H is
now defined as the expected value of the loss LD(h) =
Ez∼D l(z, h).

These two points pave the way for agnostic PAC
learning.
A hypothesis classH is agnostic PAC learnable with

respect to a set Z and a loss function l : Z×H −→ R+

if there exists a function mH : (0, 1)2 −→ N and a
learning algorithm A with the property that: for every
ϵ, δ ∈ (0, 1) and for every distribution D over Z, when
running A on mH(ϵ, δ) iid samples generated by D,
A returns a result which is close to the best possible
result. More specifically, A returns a hypothesis h
∈ H such that with probability at least 1 − δ, LD ≤
min
h*∈H

LD(h
∗) + ϵ.

As for the sample complexity in the agnostic case, it
can be proven, through a similar process as in section
3.1, that for a general loss function l : Z −→ [a, b] we
have:

mH(ϵ, δ) ≤ mUC
H (ϵ/2, δ) ≤ ⌈2(b− a)2ln(2|H|/δ)

ϵ2
⌉
(5)

Comparing the inequalities 4 and 5 we can see that
the biggest difference is the ϵ. The denominator goes
from ϵ to ϵ2 when going from the realizable to the ag-
nostic case, which means that the minimal sample size
grows by a factor of 1/ϵ. For example if ϵ is 0.01 then
the minimal sample size has to be 100 times bigger!
Thus, it is self evident that imposing the realizabilty
assumption reduces significantly the minimum sample
size required.

3.3 VC-dimension and the fundamental theorem

While in section 3.1 no restrictions were imposed on
Y , which is the codomain of function h, it would be
wise if we started simply and restrict ourselves to bi-
nary classifications {0,1}. For example, such binary
classification would be the tumor classification task
described before. Let C be a (finite) subset of h’s
domain set X (C ⊂ X). The restriction of H to C
(denoted as HC) is the set of all functions that can be
derived from H. C is shattered by H if HC is the set
of all functions from C to {0,1}.
Having established those, we can now come up to

the notion of Vapnik-Chervonekis (VC) dimension.
Formally, let S = (X,R) be a range space, then the
VC-dimension of S is the maximum cardinality of a
shattered subset of X. If there are arbitrarily large
subsets then V C(S) = ∞.

On a more informal note, imagine a binary classifi-
cation task as the one given above classifying tumors
as malignant or not and n data points that repre-
sent those tumors in some way (e.g. by length and
width). Since there are 2 possible labellings for each
data point, there are 2n possible labellings in total.
For each of these labellings, if we can take a function
from our function family that fully separates the ma-
lignant classified tumors from the benign ones, then
the set of n points is shattered by our family of func-
tions. The maximum n, which this can happen, is the
VC-dimension of our function family(HC).

Hence, we can now conclude this section with a
theorem that ties all these results together; the Fun-

Big Data from Utrecht University

damental Theorem of PAC-Learning. Let H be a hy-
pothesis class of functions from X to {0,1} and let
the loss function be the 0-1 (binary) loss. Then the
following statements are equivalent:
1. H has the uniform convergence property.
2. ERM is a successful PAC learner of H.
3. H is PAC learnable.
4. The VC-dimension of H is finite.
Equivalence of 2. and 4. are especially important for
the section that follows (3.4).

3.4 Bias and no free lunch

It seems as if this ERM rule of finding the hypothe-
sis that has the minimum loss of all hypotheses, is the
panacea for all our classification problems! No matter
what the problem is, we could allegedly use an (ab-
surdly) large, but finite, hypothesis class H and solve
the problem at hand.

But before we confirm (or debunk) such state-
ment, let’s think of the loss as a composite of 2 fac-
tors; approximation and estimation error (LD(hD) =
min
h∈H

LD(h)+ ϵest). Since we are dealing with big data,

and thus working with samples is inevitable as ex-
plained in section 2, estimation error can’t be avoided.
What could be avoided, though, is the approximation
error which measures how well the hypothesis class H
fits the distribution. Therefore, if for any problem,
no matter what it had to with, we chose a big enough
H then we could allegedly enforce the realizability as-
sumption and apply the ERM rule!

Unfortunately (or fortunately!), all of these would
be true if it wasn’t for the No Free Lunch Theorem
(NFL). The NFL Theorem (loosely speaking) states
that for every learning algorithm there are some cases
in which the algorithm will behave poorly. Choosing
an appropriate algorithm, that performs well consis-
tently, requires making assumptions about the data
generating process. Without assumptions, no “supe-
rior” algorithm, performs better than any other one.

The NFL has proven to be a controversial topic
for the scientific community. While some academics
claim that the NFL makes some very interesting
points, others, such as Giraud-Carrier and Provost,
argue that “[..] the NFL theorem is of little relevance
to research in the machine learning” ([11],[2]).

4 Frequent item set mining on big data

The task of mining frequent items sets on large
databases are fundamental techniques in data mining
and database applications. There are various algo-
rithms for this problem which vary in their approaches
and their results([3], [6]). In this essay, however, the
focus will be on 2 important papers that greatly in-
fluenced the academic community: Toivonen’s [7] and

Riondato and Upfal’s [5]. In the end a comparison of
their results will be given.

4.1 Toivonen and frequent item sets

Hannu Toivonen ([7]) was one of the pioneers in
finding frequent item sets efficiently in very large
databases. He presented an algorithm that, by mining
a random sample on the data set, creates a candidate
set of FIs that contains all the FIs in the database
with a probability relative to the sample size. It is
by no means guaranteed that that all the items in
the candidate set are frequent and also that all of the
frequent itemsets are also in the candidate set. How-
ever, in those rare cases the latter occurs, the missing
items can be found in a second pass of the database.
Toivonen also proposed a bound on the sample size
to ensure that the frequencies of the itemsets in the
sample are not far off of their real values.

Thus, he proved that for ϵ, δ >0 a sample of size
bigger than 1

2ϵ2 ln
2
δ is needed for an epsilon close ap-

proximation of the frequent itemsets.
For example, for a δ and an ϵ value of 0.001 and 0.01

respectively, a sample size of at least 50000 is required,
which is pretty reasonable given our thresholds. If the
error requirements were stricter, then the sample size
would be quite substantial.

However, removing the assumption that the
database can be infinitely large then a sample size

bigger than 1
2ϵ2 ln

2|I|
δ is needed. The proof of this

bound uses the Hoeffding and the Union bound. This
sample size can be potentially large, given that the
amount of itemsets could be many.

4.2 PAC-learning and frequent item sets

Riondato and Upfal used the aforementioned VC-
dimension in section 3.3 to develop a technique that
provided high quality approximations by mining a
small random sample of the data set [5]. They also
constructed bounds for the sample size needed to ob-
tain ϵ close approximations to the collection of fre-
quent itemsets. This was done through a concept
called the d-index. To further elaborate on that, let
D be a data set, then the d-index is defined as the
maximum integer that D contains at least d different
transactions of length d such that no one of them is a
subset of another. The last subordinate clause is also
known as an antichain.

For example, consider the data set
D={{a, b, c, d}, {a, b, d}, {a, c}, {d}} consisting of
4 transactions built upon the set of items I =
{a, b, c, d}. The d-index of D is 2 as {a, b, d} and
{a, c} form an antichain. It can be easily checked that
a d-index of 3 or 4 is not possible in this particular
example.

So using those definitions and some set theory, they
proved the following theorem: There exists a data set

Big Data 2022

D with d-index d, and a corresponding range space
that has VC-dimension exactly d.
However, due to the antichain requirement, com-

puting the d-index can be quite slow as it requires
multiples passes of the database. Hence, a new al-
gorithm was proposed to efficiently compute an up-
per bound q to the d-index; namely the d-bound. By
definition, a subset satisfying the theorem mentioned
previously should also satisfy the same theorem where
the d-bound is substituted for the d-index since d-
index ≤ d-bound. The advantage is that the com-
putation of d-bound can be performed with a single
linear scan which makes it really easy to update it
when new transactions are added in the database.

As for the sample size, the authors showed that
given a data set D, d being the d-bound, ϵ, δ ∈ (0, 1)
and c a constant then for an absolute epsilon-close ap-
proximation of the frequent itemset of the database,
a sample of at least min{|D|, c

ϵ2 (d+log 1
δ } is required.

Note that c is an absolute positive constant that does
not depend on the range space or any other parame-
ter. Löffler and Phillips showed experimentally that
this constant is at most 0.5 [4].

4.3 Toivonen vs PAC-learning

Toivonen(section 4.1) and Riondato & Upfal (section
4.2) are 2 different approaches for frequent item set
mining in databases. In a way, Riondato & Upfal
constitute an improvement in Toivonen’s works by cir-
cumventing major drawbacks in his algorithm. More
specifically, the major drawback in Toivonen’s bound
was that the sample bound depends linearly on the
number of individual items appearing in the data set
(i.e. |I|). Riondato & Upfal showed that the sample
size needed to obtain an epsilon-close approximation
is independent from the number of transactions in the
database. Not only that but also, it is always at most
as large as the d-bound (or d-index), which is always
less or equal to the longest transaction in the data
set by definition. This in turn is less or equal to the
number of individual items |I| which shows the clear
advantage of their work over Toivonen’s.

References

[1] Statista Research Department. Volume of
data/information created, captured, copied,
and consumed worldwide from 2010 to 2025.
https://www.statista.com/statistics/

871513/worldwide-data-created/, 2022.
[Online; accessed 05-April-2022].

[2] Christophe Giraud-Carrier and Foster Provost.
Toward a justification of meta-learning: Is the no
free lunch theorem a show-stopper? Proceedings
of the ICML-2005 Workshop on Meta-learning,
01 2005.

[3] Yanrong Li and Raj P. Gopalan. Effective
sampling for mining association rules. In Ge-
offrey I. Webb and Xinghuo Yu, editors, AI
2004: Advances in Artificial Intelligence, 17th
Australian Joint Conference on Artificial Intel-
ligence, Cairns, Australia, December 4-6, 2004,
Proceedings, volume 3339 of Lecture Notes in
Computer Science, pages 391–401. Springer,
2004.

[4] Maarten Löffler and Jeff M. Phillips. Shape fit-
ting on point sets with probability distributions.
CoRR, abs/0812.2967, 2008.

[5] Eli Riondato, Matteo; Upfal. Efficient discov-
ery of association rules and frequent itemsets
through sampling with tight performance guar-
antees. ACM Transactions on Knowledge Dis-
covery from Data vol. 8 iss. 4, 8, aug 2014.

[6] Tobias Scheffer and Stefan Wrobel. Finding the
most interesting patterns in a database quickly
by using sequential sampling. 3(null):833–862,
mar 2003.

[7] Hannu Toivonen. Sampling large databases for
association rules. In Proceedings of the 22th
International Conference on Very Large Data
Bases, VLDB ’96, page 134–145, San Francisco,
CA, USA, 1996. Morgan Kaufmann Publishers
Inc.

[8] L. G. Valiant. A theory of the learnable. Com-
munications of the ACM vol. 27 iss. 11, 27, nov
1984.

[9] Jeff Vance. Big data analytics overview.
https://www.datamation.com/applications/

big-data-analytics-overview/, 2013. [On-
line; accessed 05-April-2022].

[10] A. Ya. Vapnik, V. N.; Chervonenkis. On the uni-
form convergence of relative frequencies of events
to their probabilities. Theory of Probability Its
Applications vol. 16 iss. 2, 16, jan 1971.

[11] Darrell Whitley and Jean Watson. Complexity
Theory and the No Free Lunch Theorem, pages
317–339. 01 1970.

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.datamation.com/applications/big-data-analytics-overview/
https://www.datamation.com/applications/big-data-analytics-overview/

	Introduction
	Frequent item set mining
	PAC-learning
	Classification, Quality and convergence
	Realizable vs agnostic PAC-learning
	VC-dimension and the fundamental theorem
	Bias and no free lunch

	Frequent item set mining on big data
	Toivonen and frequent item sets
	PAC-learning and frequent item sets
	Toivonen vs PAC-learning

